|
Zapiski Nauchnykh Seminarov POMI, 2011, Volume 390, Pages 52–68
(Mi znsl4545)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Minimum-weight perfect matching for non-intrinsic distances on the line
J. Delona, J. Salomonb, A. Sobolevskicd a LTCI CNRS, TELECOM ParisTech, Paris, France
b CEREMADE, Université Paris-Dauphine, Paris, France
c Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia
d Laboratoire J.-V. Poncelet (UMI 2615 CNRS), Moscow, Russia
Abstract:
We consider a minimum-weight perfect matching problem on the line and establish a “bottom-up” recursion relation for weights of partial minimum-weight matchings.
Key words and phrases:
minimum-weight perfect matching, recursion, bipartite matching, concavity.
Received: 15.09.2011
Citation:
J. Delon, J. Salomon, A. Sobolevski, “Minimum-weight perfect matching for non-intrinsic distances on the line”, Representation theory, dynamical systems, combinatorial methods. Part XX, Zap. Nauchn. Sem. POMI, 390, POMI, St. Petersburg, 2011, 52–68; J. Math. Sci. (N. Y.), 181:6 (2012), 782–791
Linking options:
https://www.mathnet.ru/eng/znsl4545 https://www.mathnet.ru/eng/znsl/v390/p52
|
Statistics & downloads: |
Abstract page: | 242 | Full-text PDF : | 77 | References: | 50 |
|