Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2011, Volume 390, Pages 5–51 (Mi znsl4544)  

This article is cited in 4 scientific papers (total in 4 papers)

A survey on dynamical transport distances

L. Brasco

Laboratoire d'Analyse, Topologie et Probabilites, Universite Aix-Marseille I, Marseille, France
Full-text PDF (476 kB) Citations (4)
References:
Abstract: In this paper we review some transport models based on the continuity equation, starting with the so-called Benamou–Brenier formula, which is nothing but a fluid mechanics reformulation of the Monge–Kantorovich problem with cost $c(x,y)=|x-y|^2$. We discuss some of its applications (gradient flows, sharp functional inequalities …), as well as some variants and generalizations to dynamical transport problems, where interaction effects among mass particles are considered.
Key words and phrases: optimal transport, continuity equation, relativistic heat equation, Sobolev inequalities, branched transport.
Received: 15.09.2011
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 181, Issue 6, Pages 755–781
DOI: https://doi.org/10.1007/s10958-012-0713-7
Bibliographic databases:
Document Type: Article
UDC: 517.956.45
Language: English
Citation: L. Brasco, “A survey on dynamical transport distances”, Representation theory, dynamical systems, combinatorial methods. Part XX, Zap. Nauchn. Sem. POMI, 390, POMI, St. Petersburg, 2011, 5–51; J. Math. Sci. (N. Y.), 181:6 (2012), 755–781
Citation in format AMSBIB
\Bibitem{Bra11}
\by L.~Brasco
\paper A survey on dynamical transport distances
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XX
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 390
\pages 5--51
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4544}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 181
\issue 6
\pages 755--781
\crossref{https://doi.org/10.1007/s10958-012-0713-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858750504}
Linking options:
  • https://www.mathnet.ru/eng/znsl4544
  • https://www.mathnet.ru/eng/znsl/v390/p5
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :68
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024