Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 176, Pages 118–126 (Mi znsl4536)  

A note on a extension of Kreisel's conjecture

V. P. Orevkov
Abstract: Given a theory $\mathfrak{R}$, let $\mathfrak{R}\vdash_lA$ means that $A$ is provable in $\mathfrak{R}$ in $l$ steps. Let $L^*$ be the first order language with a constant symbol $O$, a unary function symbol $'$, a binary predicate symbol $=$, ternary predicate symbols $P$ and $Q$. The theory in $L^*$ with the axioms $\mathbb{R}^*.1$$\mathbb{R}^*.13$ defined in §1 of this paper is denoted by $\mathbb{R}^*$. The Robinson arithmetic is obtained from $\mathbb{R}^*$ by replacing the predicate symbols $P$ and $Q$ by the function symbols $+$ and $\cdot$. Define $t^{(n)}$ as $n$-times iteration of $'$ starting with $t$.
THEOREM. There is a natural number $c_1$ such that for any consistent extension $\mathfrak{A}$ of $\mathbb{R}^*$ there are a formula $A(a)$ and natural number $c_2$ with the following properties: 1) $\mathfrak{A}\not\vdash\forall x\,A(x)$, 2) for any natural number $n$
$$ \mathbb{R}^*\vdash_{c_1[\log_2(n+1)+c_2]}A(O^{(n)}). $$
English version:
Journal of Soviet Mathematics, 1992, Volume 59, Issue 3, Pages 850–855
DOI: https://doi.org/10.1007/BF01104108
Bibliographic databases:
Document Type: Article
UDC: 510.66
Language: Russian
Citation: V. P. Orevkov, “A note on a extension of Kreisel's conjecture”, Computational complexity theory. Part 4, Zap. Nauchn. Sem. LOMI, 176, "Nauka", Leningrad. Otdel., Leningrad, 1989, 118–126; J. Soviet Math., 59:3 (1992), 850–855
Citation in format AMSBIB
\Bibitem{Ore89}
\by V.~P.~Orevkov
\paper A note on a extension of Kreisel's conjecture
\inbook Computational complexity theory. Part~4
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 176
\pages 118--126
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1023600}
\zmath{https://zbmath.org/?q=an:0779.03021|0703.03036}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 59
\issue 3
\pages 850--855
\crossref{https://doi.org/10.1007/BF01104108}
Linking options:
  • https://www.mathnet.ru/eng/znsl4536
  • https://www.mathnet.ru/eng/znsl/v176/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024