Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 176, Pages 68–103 (Mi znsl4534)  

Complexity of factoring and GCD calculating for linear ordinary differential operators

D. Yu. Grigor'ev
Abstract: Let $L=\sum\limits_{0\leqslant k\leqslant n}f_k(X)\frac{d^k}{dX^k}\in F(X)\left[\frac d{dX}\right]$ be a linear ordinary differential operator, where the field $F\simeq\mathbb{Q}(T_1,\dots,T_\varepsilon)[Z]/(\varphi)$, here $T_1,\dots,T_\varepsilon$ are algebraically independent over $\mathbb{Q}$ and the polynomial $\varphi\in\mathbb{Q}[T_1,\dots,T_\varepsilon][Z]$ is irreducible. Assume that $\mathrm{deg}_X(f_k)<d$, $\mathrm{deg}_Z(\varphi)<d_1$; $\mathrm{deg}_{T_1,\dots,T_\varepsilon}(\varphi)$, $\mathrm{deg}_{T_1,\dots,T_\varepsilon}(f_k)<d_2$ and the bit-size of each rational coefficient occurring in $L$ and in $\varphi$ is less than $M$. Define an integer $N$ such that for any representation $L=Q_1Q_2Q_3$, where $Q_1$, $Q_2$, $Q_3\in\overline{F}(X)\left[\frac d{dx}\right]$ and $Q_2$, $Q_3$ are monic, holds $\mathrm{deg}_X(Q_2)\leqslant N$.
THEOREM. 1) One can factor $L=L_1\dots L_s$ in a product of irreducible in the ring $\overline{F}(X)\left[\frac d{dx}\right]$ operators $L_1,\dots,L_s\in F_1(X)\left[\frac d{dx}\right]$ and construct an irreducible polynomial $\varphi_1\in\mathbb{Q}(T_1,\dots,T_\varepsilon)[Z]$ such that $F\simeq\mathbb{Q}(T_1,\dots,T_\varepsilon)[Z]/(\varphi_1)$ in time $(M((Ndn)^{n^2\log(n)}d_1^{\,\log(n)}d_2)^{n^2+\varepsilon})^{O(1)}$;
2) $N\leqslant\exp((M+\varepsilon d_2)(d2^n)^{o(d2^{2n})}d_1^{\,o(2^n)})$.
Define the greatest common right divisor $G=GCRD(Q_1,\dots,Q_s)$ of a family $Q_1,\dots,Q_s\in F(X)\left[\frac d{dx}\right]$ in such a way that $Q_1=\widetilde{Q}_1G,\dots,Q_s=\widetilde{Q}_sG$ and $G$ is of the maximal possible order. Assume that $Q_1,\dots,Q_s$ satisfy the same bounds as Li above.
THEOREM 3). One can yield $GCRD(Q_1,\dots,Q_s)$ in time $(Md(d_1nsd_2)^{\varepsilon+1})^{O(1)}$.
English version:
Journal of Soviet Mathematics, 1992, Volume 59, Issue 3, Pages 823–841
DOI: https://doi.org/10.1007/BF01104106
Bibliographic databases:
Document Type: Article
UDC: 518.5 + 512.46
Language: Russian
Citation: D. Yu. Grigor'ev, “Complexity of factoring and GCD calculating for linear ordinary differential operators”, Computational complexity theory. Part 4, Zap. Nauchn. Sem. LOMI, 176, "Nauka", Leningrad. Otdel., Leningrad, 1989, 68–103; J. Soviet Math., 59:3 (1992), 823–841
Citation in format AMSBIB
\Bibitem{Gri89}
\by D.~Yu.~Grigor'ev
\paper Complexity of factoring and GCD calculating for linear ordinary differential operators
\inbook Computational complexity theory. Part~4
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 176
\pages 68--103
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1023598}
\zmath{https://zbmath.org/?q=an:0780.65039|0704.65050}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 59
\issue 3
\pages 823--841
\crossref{https://doi.org/10.1007/BF01104106}
Linking options:
  • https://www.mathnet.ru/eng/znsl4534
  • https://www.mathnet.ru/eng/znsl/v176/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024