Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 176, Pages 53–67 (Mi znsl4533)  

This article is cited in 1 scientific paper (total in 1 paper)

Complexity of quantifier elimination in the theory of ordinary differentially closed fields

D. Yu. Grigor'ev
Full-text PDF (903 kB) Citations (1)
Abstract: Let a formula of the first-order theory of ordinary differentially closed fields $Q_1u_1\dots Q_nu_n(\Omega)$ be given, where $Q_1,\dots,Q_n$ are quantifiers and $\Omega$ is quantifier-free with atomic subformulas of the kind ($f_i=0$), $1\leqslant i\leqslant N$, here $f_i\in F\{u_1,\dots,u_n,v_1,\dots,v_n\}$ are differential polynomials (with respect to differentiation in $X$). The field $F\simeq\mathbb{Q}(T_1,\dots,T_\varepsilon)[Z]/(\varphi)$ where $T_1,\dots,T_\varepsilon$ are algebraically independent over $\mathbb{Q}$ and the polynomial $\varphi\in\mathbb{Q}(T_1,\dots,T_\varepsilon)[Z]$ is irreducible. Assume that the orders $\mathrm{ord}_{u_s}(f_i)\leqslant r$, $\mathrm{ord}_{v_t}(f_i)\leqslant r$ and the degree of $f_i$ considered as a polynomial in all the variables $X$, $u_1,u_1^{(1)},\dots,u_1^{(r)},\dots,u_n,u_n^{(1)},\dots,u_n^{(r)},v_1,v_1^{(1)},\dots,v_1^{(r)},\dots,v_m,v_1^{(1)},\dots,v_m^{(r)}$ is less than $d$, where $v_t^{(s)}=d^sv_t/dX^s$, moreover $\mathrm{deg}_Z(\varphi)<d_1$; $\mathrm{deg}_{T_1,\dots,T_\varepsilon}(\varphi)$, $\mathrm{deg}_{T_1,\dots,T_\varepsilon}(f_i)<d_2$ and the bit-size of each rational coefficient occurring in $\varphi$ and in $f_i$ is less than $M$.
THEOREM. One can produce a quantifier-free formula equivalent in the theory of differentially closed fields to $Q_1u_1\dots Q_nu_n(\Omega)$ in time $(M(((Nd)^{m^n}d_1d_2)^{O(1)^{r2^n}})^{\varepsilon+m})^{O(1)}$.
The previously known quantifier elimination procedure for this theory due to A. Seidenberg has a non-elementary complexity.
English version:
Journal of Soviet Mathematics, 1992, Volume 59, Issue 3, Pages 814–822
DOI: https://doi.org/10.1007/BF01104105
Bibliographic databases:
Document Type: Article
UDC: 518.5
Language: Russian
Citation: D. Yu. Grigor'ev, “Complexity of quantifier elimination in the theory of ordinary differentially closed fields”, Computational complexity theory. Part 4, Zap. Nauchn. Sem. LOMI, 176, "Nauka", Leningrad. Otdel., Leningrad, 1989, 53–67; J. Soviet Math., 59:3 (1992), 814–822
Citation in format AMSBIB
\Bibitem{Gri89}
\by D.~Yu.~Grigor'ev
\paper Complexity of quantifier elimination in the theory of ordinary differentially closed fields
\inbook Computational complexity theory. Part~4
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 176
\pages 53--67
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4533}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1023597}
\zmath{https://zbmath.org/?q=an:0779.03008|0703.03011}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 59
\issue 3
\pages 814--822
\crossref{https://doi.org/10.1007/BF01104105}
Linking options:
  • https://www.mathnet.ru/eng/znsl4533
  • https://www.mathnet.ru/eng/znsl/v176/p53
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024