Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 176, Pages 3–52 (Mi znsl4532)  

Deciding consistency of systems of polynomial in exponent inequalities in subexponential time

N. N. Vorobjov (Jr.)
Abstract: Let the polynomials $P_1,\dots,P_k\in\mathbb{Z}[U,X_1,\dots,X_n]$, $h\in\mathbb{Z}[X_1,\dots,X_n]$ have degrees $\mathrm{deg}_{U,X_1,\dots,X_n}(P_i)$, $\mathrm{deg}_{X_1,\dots,X_n}(h)<d$ and absolute value of any coefficient of $P_i$ or $h$ is less then or equal to $2^M$ for all $1\leqslant i\leqslant k$. An algorithm is described which recognises the consistency in $\mathbb{R}^n$ of the system of inequalities $f_1\geqslant0,\dots,f_{k_1}\geqslant0,f_{k_1+1}>0,\dots,f_k>0$ where $f_i(X_1,\dots,X_n)=P_i(e^{h(X_1,\dots,X_n)},X_1,\dots,X_n)$ within the time polynomial in $M$, $(nkd)^{n^4}$. This result is a generalization of the subexponential-time algorithms for deciding consistency of systems of polynomial inequalities, which were designed in [4], [5], [23] and can be considered also as a contribution to the solution of Tarski's decidability problem concerning the first order theory of reals with exponentiation [1].
English version:
Journal of Soviet Mathematics, 1992, Volume 59, Issue 3, Pages 789–814
DOI: https://doi.org/10.1007/BF01104104
Bibliographic databases:
Document Type: Article
UDC: 519.5+512.46
Language: Russian
Citation: N. N. Vorobjov (Jr.), “Deciding consistency of systems of polynomial in exponent inequalities in subexponential time”, Computational complexity theory. Part 4, Zap. Nauchn. Sem. LOMI, 176, "Nauka", Leningrad. Otdel., Leningrad, 1989, 3–52; J. Soviet Math., 59:3 (1992), 789–814
Citation in format AMSBIB
\Bibitem{Vor89}
\by N.~N.~Vorobjov (Jr.)
\paper Deciding consistency of systems of polynomial in exponent inequalities in subexponential time
\inbook Computational complexity theory. Part~4
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 176
\pages 3--52
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4532}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1023596}
\zmath{https://zbmath.org/?q=an:0780.65034}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 59
\issue 3
\pages 789--814
\crossref{https://doi.org/10.1007/BF01104104}
Linking options:
  • https://www.mathnet.ru/eng/znsl4532
  • https://www.mathnet.ru/eng/znsl/v176/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024