Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 174, Pages 147–177 (Mi znsl4516)  

This article is cited in 32 scientific papers (total in 32 papers)

Isomorphism problem for classes of graphs closed under contractions

I. N. Ponomarenko
Abstract: A graph $G$ is contracted to graph $H$ if $H$ can be obtained from an induced subgraph of $G$ by contracting edged. The main purpose of the paper is to describe $C$-classes, i.e. classes of graphs closed under the contractions, from the point of view isomorphism problem. The key part of the considerations is connected to constructing polynomial-time algorithm to test isomorphism of graphs with bounded Hadviger number. The algorithm involves combinatorial properties of graphs from above class and group-theoretical ones of their automorphism groups. The result about graphs with bounded Hadviger number gives opportunity to characterise both isomorphism-complete $C$-classes and $C$-classes with polynomial-time isomorphism test.
English version:
Journal of Soviet Mathematics, 1991, Volume 55, Issue 2, Pages 1621–1643
DOI: https://doi.org/10.1007/BF01098279
Bibliographic databases:
Document Type: Article
UDC: 519.5
Language: Russian
Citation: I. N. Ponomarenko, “Isomorphism problem for classes of graphs closed under contractions”, Computational complexity theory. Part 3, Zap. Nauchn. Sem. LOMI, 174, "Nauka", Leningrad. Otdel., Leningrad, 1988, 147–177; J. Soviet Math., 55:2 (1991), 1621–1643
Citation in format AMSBIB
\Bibitem{Pon88}
\by I.~N.~Ponomarenko
\paper Isomorphism problem for classes of graphs closed under contractions
\inbook Computational complexity theory. Part~3
\serial Zap. Nauchn. Sem. LOMI
\yr 1988
\vol 174
\pages 147--177
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0976178}
\zmath{https://zbmath.org/?q=an:0745.05035}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 55
\issue 2
\pages 1621--1643
\crossref{https://doi.org/10.1007/BF01098279}
Linking options:
  • https://www.mathnet.ru/eng/znsl4516
  • https://www.mathnet.ru/eng/znsl/v174/p147
  • This publication is cited in the following 32 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :183
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024