Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 174, Pages 122–131 (Mi znsl4514)  

This article is cited in 1 scientific paper (total in 1 paper)

Diophantine complexity

Yu. V. Matijasevich
Full-text PDF (648 kB) Citations (1)
Abstract: It is well-known that every recursively enumerable set $S$ of natural numbers can be represented as $a\in S\Leftrightarrow \exists x\,\forall y\leqslant x\,\exists z_1,\dots,z_n$ ($D(a,x,y,z_1,\dots,z_n)=0$) (Davis normal form), as $a\in S\Leftrightarrow \exists z_1,\dots,z_n$ ($E_1(a,z_1,\dots,z_n)=E_2(a,z_1,\dots,z_n)$) (exponential Diophantine representation) and as $a\in S\Leftrightarrow \exists z_1,\dots,z_n$ ($D(a,z_1,\dots,z_n)=0$) (Diophantine representation). Each of the above three representations enables us to introduce different complexity measures both of the set $S$ as a whole and of accepting individual members of $S$.
The paper surveys some results by different authors connected with such kinds of complexity measures.
English version:
Journal of Soviet Mathematics, 1991, Volume 55, Issue 2, Pages 1603–1610
DOI: https://doi.org/10.1007/BF01098277
Bibliographic databases:
Document Type: Article
UDC: 510.52+511.5
Language: Russian
Citation: Yu. V. Matijasevich, “Diophantine complexity”, Computational complexity theory. Part 3, Zap. Nauchn. Sem. LOMI, 174, "Nauka", Leningrad. Otdel., Leningrad, 1988, 122–131; J. Soviet Math., 55:2 (1991), 1603–1610
Citation in format AMSBIB
\Bibitem{Mat88}
\by Yu.~V.~Matijasevich
\paper Diophantine complexity
\inbook Computational complexity theory. Part~3
\serial Zap. Nauchn. Sem. LOMI
\yr 1988
\vol 174
\pages 122--131
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4514}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0976176}
\zmath{https://zbmath.org/?q=an:0724.03027|0679.03016}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 55
\issue 2
\pages 1603--1610
\crossref{https://doi.org/10.1007/BF01098277}
Linking options:
  • https://www.mathnet.ru/eng/znsl4514
  • https://www.mathnet.ru/eng/znsl/v174/p122
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :138
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024