Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 174, Pages 3–36 (Mi znsl4510)  

This article is cited in 1 scientific paper (total in 1 paper)

Solving systems of polynomial inequalities over real closed fields in subexponential time

N. N. Vorobjov (Jr.), D. Yu. Grigor'ev
Abstract: Let $\mathbb{Q}_m$ denote the field $\mathbb{Q}(\delta_1,\dots,\delta_m)$, where $m\geqslant1$, $\mathbb{Q}_0=\mathbb{Q}$ and an element $\delta_m$ is infinitesimal relatively to the elements of the field $\mathbb{Q}_{m-1}$, i.e. $0<\delta_m<a$ for any $0<a\in\mathbb{Q}_{m-1}$. Denote by $\widetilde{\mathbb{Q}}_m$ the real closure of $\mathbb{Q}_m$. A subexponential-time algorithm is described for finding solutions in $\widetilde{\mathbb{Q}}_m$ of a system of polynomial inequalities. In the case $m=0$ (i.e. $\mathbb{Q}_m=\mathbb{Q}$), exponential-time procedures were designed for this problem ([4], [16], [20]). Finally, in [3], [21] the authors proposed subexponential-time algorithm for $m=0$.
Let
$$ f_1>0,\dots,f_{k_1}>0, f_{k_1+1}\geqslant0,\dots,f_k\geqslant0 \qquad{(1)} $$
be the input system where polynomials $f_1,\dots,f_k\in\mathbb{Q}_m[X_1,\dots,X_n]$.
Denote by $V\subset(\widetilde{\mathbb{Q}}_m)^n$ the set of all solutions of (1). For a rational function $\alpha=\alpha_1/\alpha_2\in\mathbb{Q}_m(X_1,\dots X_n)$ where polynomials $\alpha_1,\alpha_2\in\mathbb{Z}[\delta_1,\dots,\delta_m][X_1,\dots,X_n]$ denote by $l(\alpha)$ the maximum bit lengths of the integer coefficients of $\alpha_1$$\alpha_2$. Suppose, that the following inequalities are valid:
$$ \mathrm{deg}_{\delta_1,\dots,\delta_m}(f_i)<d_0,\quad \mathrm{deg}_{X_1,\dots,X_n}(f_i)<d,\quad l(f_i)\leqslant M,\quad1\leqslant i\leqslant k. \qquad{(2)} $$
The notation $h_1\leqslant\mathcal{P}(h_2,\dots,h_t)$ for functions $h_1>0,\dots,h_t>0$ means that for suitable natural numbers $p$, $q$ an inequality $h_1\leqslant p(h_2\cdots h_t)^q$ is true.
THEOREM. There is an algorithm which for system (1), satisfying (2), produces $a$ finite set $\mathcal{J}\subset V$ having nonempty intersection with each component of connectivity of $V$, with the number of points in $\mathcal{J}$ not exceeding $\mathcal{P}((kd)^{n^2})$. The running time of the algorithm is less than $\mathcal{P}(M,((kd)^n d_0)^{m+n})$. For every point $(\xi_1,\dots,\xi_n)\in\mathcal{J}$ the algorithm constructs an irreducible over $\mathbb{Q}_m$ polynomial $\Phi\in\mathbb{Q}_m[Z]$, and the expressions $\xi_i=\xi_i(\omega)=\sum\limits_{0\leqslant j<\mathrm{deg}(\Phi)}\alpha_j^{(i)}\omega^j\in\mathbb{Q}_m[\omega]$, where $\alpha_j^{(i)}\in\mathbb{Q}_m$ ($1\leqslant i\leqslant n$) and $\omega\in\widetilde{\mathbb{Q}}_m$, $\Phi(\omega)=0$. The constructed polynomials and expressions satisfy the following bounds: $\mathrm{deg}_{\delta_1,\dots,\delta_m,X_1,\dots,X_n}(\Phi)\leqslant d_0\mathcal{P}((kd)^n)$; $l(\Phi)$, $l(\xi_j(\omega))\leqslant(M+md_0)\mathcal{P}((kd)^n)$. Besides that, in the case $m=0$, the algorithm produces a pair of rational numbers $b_1,b_2\in\mathbb{Q}$ such that inside the interval $(b_1,b_2)\subset\mathbb{R}$ there is a unique real root $\omega\in(b_1,b_2)$ of $\Phi$, herewith $l(b_1), l(b_2)\leqslant M\mathcal{P}((kd)^n)$.
English version:
Journal of Soviet Mathematics, 1991, Volume 55, Issue 2, Pages 1519–1540
DOI: https://doi.org/10.1007/BF01098273
Bibliographic databases:
Document Type: Article
UDC: 519.5+512.46
Language: Russian
Citation: N. N. Vorobjov (Jr.), D. Yu. Grigor'ev, “Solving systems of polynomial inequalities over real closed fields in subexponential time”, Computational complexity theory. Part 3, Zap. Nauchn. Sem. LOMI, 174, "Nauka", Leningrad. Otdel., Leningrad, 1988, 3–36; J. Soviet Math., 55:2 (1991), 1519–1540
Citation in format AMSBIB
\Bibitem{VorGri88}
\by N.~N.~Vorobjov (Jr.), D.~Yu.~Grigor'ev
\paper Solving systems of polynomial inequalities over real closed fields in subexponential time
\inbook Computational complexity theory. Part~3
\serial Zap. Nauchn. Sem. LOMI
\yr 1988
\vol 174
\pages 3--36
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0976172}
\zmath{https://zbmath.org/?q=an:0683.65045}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 55
\issue 2
\pages 1519--1540
\crossref{https://doi.org/10.1007/BF01098273}
Linking options:
  • https://www.mathnet.ru/eng/znsl4510
  • https://www.mathnet.ru/eng/znsl/v174/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024