Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 171, Pages 174–181 (Mi znsl4476)  

This article is cited in 1 scientific paper (total in 1 paper)

On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids

A. P. Oskolkov
Full-text PDF (330 kB) Citations (1)
Abstract: It is proved that for nonstationary equations of motions of linear viscoelastic fluids which obey the reological equation
$$ \left(1+\sum_{l=1}^L\lambda_l\frac{\partial^l}{\partial t^l}\right)\sigma=2\nu\left(1+\sum_{m=1}^M x_m\nu^{-1}\frac{\partial^m}{\partial t^m}\right)D, $$
the stationary system is the stationary Navier–Stokes system
$$ -\nu\Delta v+v_k\frac{\partial v}{\partial x_k}+\mathrm{grad}\, p=f(x), \quad\mathrm{div}\, v=0.\qquad{(*)} $$
It is proved that for “small” Reynolds numbers solutions of the initial boundary-value problems for the equations of motions of Oldroyd type fluids ($M=L=1,2,\dots$) and Kelvin–Voight type fluids ($M=L+1$, $L=0,1,2,\dots$) fends for $t\to\infty$ to the solution of the boundary-value problem for the stationary Navier–Stokes system ($*$).
English version:
Journal of Soviet Mathematics, 1991, Volume 56, Issue 2, Pages 2396–2402
DOI: https://doi.org/10.1007/BF01671938
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. P. Oskolkov, “On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids”, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Zap. Nauchn. Sem. LOMI, 171, "Nauka", Leningrad. Otdel., Leningrad, 1989, 174–181; J. Soviet Math., 56:2 (1991), 2396–2402
Citation in format AMSBIB
\Bibitem{Osk89}
\by A.~P.~Oskolkov
\paper On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~20
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 171
\pages 174--181
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4476}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1031989}
\zmath{https://zbmath.org/?q=an:0729.35104|0708.35069}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 56
\issue 2
\pages 2396--2402
\crossref{https://doi.org/10.1007/BF01671938}
Linking options:
  • https://www.mathnet.ru/eng/znsl4476
  • https://www.mathnet.ru/eng/znsl/v171/p174
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024