Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 171, Pages 106–162 (Mi znsl4474)  

This article is cited in 16 scientific papers (total in 16 papers)

Estimates for Besov and Lizorkin–Triebel norms of solutions of the second-order linear hyperbolic equations

L. V. Kapitanskii
Abstract: We study the nonhomogeneous hyperbolic equations
$$ \partial^2_tu+iB(t)\partial_tu+A(t)u=h\qquad{(1)} $$
on $[0,T]\times\mathfrak{M}$, where $\mathfrak{M}=\mathbb{R}^n$ or $\mathfrak{M}$ is a smooth closed manifold, $A(t)$ and $B(t)$ are the time-dependent pseudodifferential operators on $\mathfrak{M}$ of orders 2 and 1, resp. For the solutions of (1) we obtain the estimates of the form
\begin{multline*} ||\partial_t^lu(t,\cdot)||_{G_{p,q_2}^{r-l}}\leqslant c\left\{\sigma_{\nu,p,n}(t)(||u(0,\cdot)||_{E_{p',q_1}^{r+\nu}}+\right.\\ +\left.||\partial_t u(0,\cdot)||_{E_{p',q_1}^{r+\nu-1}})+\int_0^t\sigma_{\nu,p,n}(t-\tau)||h(\tau,\cdot)||_{E_{p',q_1}^{r+\nu-1}}d\tau\right\} \end{multline*}
with arbitrary real $r$ and integer $l\geqslant0$, where $G.^\cdot,.$ and $E.^\cdot,.$ are the corresponding Besov spaces $B.^\cdot,.(\mathfrak{M})$ or Lizorkin–Triebel spaces $F.^\cdot,.(\mathfrak{M})$. The admissible choice of these spaces as well as the choice of the scalar function $\sigma_{\nu,p,n}(t)$ depends on the values of $n$, $\nu$, $p$, $q_1$, $q_2$ and “the Brenner's number” $m$, defined by the principal symbols of operators $A(0)$ and $B(0)$.
Another class of estimates obtained in this paper, the estimates of the form
$$ \left(\int_0^T ||\partial_t^lu(t,\cdot)||_{G_{p,q_1}^{r-l}}^{q_2}dt\right)^{1/q_2}\leqslant c\left\{||u(0,\cdot)||_{H^s}+||\partial_tu(0,\cdot)||_{H^{s-1}}+\int_0^T||h(t,\cdot)||_{H^{s-1}}dt\right\}, $$
characterize the space-time integrability properties and the “smoothing” (for $t>0$) of the solutions of (1).
English version:
Journal of Soviet Mathematics, 1991, Volume 56, Issue 2, Pages 2348–2389
DOI: https://doi.org/10.1007/BF01671936
Bibliographic databases:
Document Type: Article
UDC: 517.956.3
Language: Russian
Citation: L. V. Kapitanskii, “Estimates for Besov and Lizorkin–Triebel norms of solutions of the second-order linear hyperbolic equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Zap. Nauchn. Sem. LOMI, 171, "Nauka", Leningrad. Otdel., Leningrad, 1989, 106–162; J. Soviet Math., 56:2 (1991), 2348–2389
Citation in format AMSBIB
\Bibitem{Kap89}
\by L.~V.~Kapitanskii
\paper Estimates for Besov and Lizorkin--Triebel norms of solutions of the second-order linear hyperbolic equations
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~20
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 171
\pages 106--162
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1031987}
\zmath{https://zbmath.org/?q=an:0759.35014|0725.35022}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 56
\issue 2
\pages 2348--2389
\crossref{https://doi.org/10.1007/BF01671936}
Linking options:
  • https://www.mathnet.ru/eng/znsl4474
  • https://www.mathnet.ru/eng/znsl/v171/p106
    Erratum
    This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024