|
Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 171, Pages 106–162
(Mi znsl4474)
|
|
|
|
This article is cited in 16 scientific papers (total in 16 papers)
Estimates for Besov and Lizorkin–Triebel norms of solutions of the second-order linear hyperbolic equations
L. V. Kapitanskii
Abstract:
We study the nonhomogeneous hyperbolic equations
$$
\partial^2_tu+iB(t)\partial_tu+A(t)u=h\qquad{(1)}
$$
on $[0,T]\times\mathfrak{M}$, where $\mathfrak{M}=\mathbb{R}^n$ or $\mathfrak{M}$ is a smooth closed manifold,
$A(t)$ and $B(t)$ are the time-dependent pseudodifferential
operators on $\mathfrak{M}$ of orders 2 and 1, resp. For the solutions of (1) we obtain the estimates of the form
\begin{multline*}
||\partial_t^lu(t,\cdot)||_{G_{p,q_2}^{r-l}}\leqslant c\left\{\sigma_{\nu,p,n}(t)(||u(0,\cdot)||_{E_{p',q_1}^{r+\nu}}+\right.\\
+\left.||\partial_t u(0,\cdot)||_{E_{p',q_1}^{r+\nu-1}})+\int_0^t\sigma_{\nu,p,n}(t-\tau)||h(\tau,\cdot)||_{E_{p',q_1}^{r+\nu-1}}d\tau\right\}
\end{multline*}
with arbitrary real $r$ and integer $l\geqslant0$, where $G.^\cdot,.$ and $E.^\cdot,.$
are the corresponding Besov spaces $B.^\cdot,.(\mathfrak{M})$ or Lizorkin–Triebel spaces $F.^\cdot,.(\mathfrak{M})$.
The admissible choice of these spaces
as well as the choice of the scalar function $\sigma_{\nu,p,n}(t)$ depends
on the values of $n$, $\nu$, $p$, $q_1$, $q_2$ and “the Brenner's number” $m$,
defined by the principal symbols of operators $A(0)$ and $B(0)$.
Another class of estimates obtained in this paper, the
estimates of the form
$$
\left(\int_0^T ||\partial_t^lu(t,\cdot)||_{G_{p,q_1}^{r-l}}^{q_2}dt\right)^{1/q_2}\leqslant c\left\{||u(0,\cdot)||_{H^s}+||\partial_tu(0,\cdot)||_{H^{s-1}}+\int_0^T||h(t,\cdot)||_{H^{s-1}}dt\right\},
$$
characterize the space-time integrability properties and the
“smoothing” (for $t>0$) of the solutions of (1).
Citation:
L. V. Kapitanskii, “Estimates for Besov and Lizorkin–Triebel norms of solutions of the second-order linear hyperbolic equations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Zap. Nauchn. Sem. LOMI, 171, "Nauka", Leningrad. Otdel., Leningrad, 1989, 106–162; J. Soviet Math., 56:2 (1991), 2348–2389
Linking options:
https://www.mathnet.ru/eng/znsl4474 https://www.mathnet.ru/eng/znsl/v171/p106
|
Statistics & downloads: |
Abstract page: | 129 | Full-text PDF : | 73 |
|