Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 170, Pages 254–273 (Mi znsl4464)  

This article is cited in 1 scientific paper (total in 1 paper)

Approximation of functions analytic in a simply connected domain and representable with the help of Cauchy type integral by sequences of rational fractions with poles prescribed by a given matrix

G. Ts. Tumarkin
Abstract: Let $G$ and $\{x_{kj}\}$ be the domain and the matrix mentioned in the title, the boundary of $G$ being rectifiable. A general scheme of approximation of functions $f$ in $G$ representable in the form $f(z)=(2\pi i)^{-1}\int g(\zeta)(\zeta-z)^{-1}d \zeta$ with $g\in Z_2(\partial G)$ by a sequence of rational fractions $\{r_k\}$ is described. A specific feature of this scheme is that the poles of $r_k$ are all in the $k$-th row of $\{x_{kj}\}$. A necessary and sufficient condition on $\{x_{kj}\}$ is given for all functions $f$ as above to be approximable, uniformly inside $G$, with the help of the scheme in question. In the case when this condition is not satisfied, all approximable functions are described, provided $\mathbb{C}\setminus G$ is a Smirnov domain.
English version:
Journal of Soviet Mathematics, 1993, Volume 63, Issue 2, Pages 258–268
DOI: https://doi.org/10.1007/BF01099316
Bibliographic databases:
Document Type: Article
UDC: 517.548
Language: Russian
Citation: G. Ts. Tumarkin, “Approximation of functions analytic in a simply connected domain and representable with the help of Cauchy type integral by sequences of rational fractions with poles prescribed by a given matrix”, Investigations on linear operators and function theory. Part 17, Zap. Nauchn. Sem. LOMI, 170, "Nauka", Leningrad. Otdel., Leningrad, 1989, 254–273; J. Soviet Math., 63:2 (1993), 258–268
Citation in format AMSBIB
\Bibitem{Tum89}
\by G.~Ts.~Tumarkin
\paper Approximation of functions analytic in a simply connected domain and representable with the help of Cauchy type integral by sequences of rational fractions with poles prescribed by a given matrix
\inbook Investigations on linear operators and function theory. Part~17
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 170
\pages 254--273
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1039583}
\zmath{https://zbmath.org/?q=an:0784.30035|0722.30023}
\transl
\jour J. Soviet Math.
\yr 1993
\vol 63
\issue 2
\pages 258--268
\crossref{https://doi.org/10.1007/BF01099316}
Linking options:
  • https://www.mathnet.ru/eng/znsl4464
  • https://www.mathnet.ru/eng/znsl/v170/p254
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024