|
Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 170, Pages 184–206
(Mi znsl4461)
|
|
|
|
Spectral parameter asymptotics of the Weil solutions of Sturm-Liouville equations
V. A. Marchenko
Abstract:
In the article the dependence with respect to $\lambda$ of the Weil solution $\psi(\lambda,x)=c(\lambda,x)+n(\lambda)s(\lambda,x)$ of the Sturm–Liouville equation $-y''+q(x)y=\lambda^2y$ is investigated. For a semi-bounded $q$ such that $q(x)\leqslant\exp(c_0+c_1|x|)$ it is proved that $\lim\limits_{\substack{|\lambda|\to\infty\\ |\mathop{\mathrm{Im}}\lambda|\geqslant\varepsilon}}(\sup\limits_{|x|\leqslant A}|e^{-i\lambda x}\psi(\lambda,x)-1|)=0$ for any positive $\varepsilon$ and $A$.
Citation:
V. A. Marchenko, “Spectral parameter asymptotics of the Weil solutions of Sturm-Liouville equations”, Investigations on linear operators and function theory. Part 17, Zap. Nauchn. Sem. LOMI, 170, "Nauka", Leningrad. Otdel., Leningrad, 1989, 184–206; J. Soviet Math., 63:2 (1993), 217–232
Linking options:
https://www.mathnet.ru/eng/znsl4461 https://www.mathnet.ru/eng/znsl/v170/p184
|
Statistics & downloads: |
Abstract page: | 265 | Full-text PDF : | 103 |
|