Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 170, Pages 157–175 (Mi znsl4459)  

This article is cited in 1 scientific paper (total in 2 paper)

On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets

B. Ya. Levin, V. N. Logvinenko
Full-text PDF (786 kB) Citations (2)
Abstract: Let $Z_j$ be Euclidean spaces of vectors $z_j=(z_{j,1},\dots,z_{j,n_j+1})$, $Z=\bigoplus\limits_{j=1}^pZ_j$, $X=\bigoplus\limits_{j=1}^p(z_{j,1},\dots,z_{j,n_j})$. A function $u:Z\to\mathbb{R}_+$, $u\not\equiv0$, is called logarithmically $p$-subharmonic, if $\log u(z)$ is upper semicontinuous and for any $j$ and for any $z_k$, $k\ne j$, either the function $z_j\to\log u(z_1,\dots,z_p)$ is subharmonic or $\log u(z_1,\dots,z_p)\equiv-\infty$.
For such functions $u$ that satisfy the growth estimate
$$ \log u(z)\leqslant\sigma\prod_{j=1}^p(1+|z_{j,n_j+1}|)+N\left(\sum_{\substack{1\leqslant j\leqslant p\\ 1\leqslant k\leqslant n_j}} z_{j,k}^2\right)^{1/2}+c,\quad \sigma, N\geqslant0,\quad c\in\mathbb{R}, $$
theorems are proved about the equivalence of $L^\infty(L^q)$-norm of restrictions $u\mid X$ and $u\mid E$ for some relatively dense subset $E$ of $X$.
These theorems generalize well-known results of Cartwright and Plancherel–Polya.
English version:
Journal of Soviet Mathematics, 1993, Volume 63, Issue 2, Pages 202–211
DOI: https://doi.org/10.1007/BF01099311
Bibliographic databases:
Document Type: Article
UDC: 517.55
Language: Russian
Citation: B. Ya. Levin, V. N. Logvinenko, “On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets”, Investigations on linear operators and function theory. Part 17, Zap. Nauchn. Sem. LOMI, 170, "Nauka", Leningrad. Otdel., Leningrad, 1989, 157–175; J. Soviet Math., 63:2 (1993), 202–211
Citation in format AMSBIB
\Bibitem{LevLog89}
\by B.~Ya.~Levin, V.~N.~Logvinenko
\paper On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets
\inbook Investigations on linear operators and function theory. Part~17
\serial Zap. Nauchn. Sem. LOMI
\yr 1989
\vol 170
\pages 157--175
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1039578}
\zmath{https://zbmath.org/?q=an:0784.31004|0707.31006}
\transl
\jour J. Soviet Math.
\yr 1993
\vol 63
\issue 2
\pages 202--211
\crossref{https://doi.org/10.1007/BF01099311}
Linking options:
  • https://www.mathnet.ru/eng/znsl4459
  • https://www.mathnet.ru/eng/znsl/v170/p157
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024