|
Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 170, Pages 157–175
(Mi znsl4459)
|
|
|
|
This article is cited in 1 scientific paper (total in 2 paper)
On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets
B. Ya. Levin, V. N. Logvinenko
Abstract:
Let $Z_j$ be Euclidean spaces of vectors $z_j=(z_{j,1},\dots,z_{j,n_j+1})$,
$Z=\bigoplus\limits_{j=1}^pZ_j$, $X=\bigoplus\limits_{j=1}^p(z_{j,1},\dots,z_{j,n_j})$. A function
$u:Z\to\mathbb{R}_+$, $u\not\equiv0$, is called logarithmically $p$-subharmonic,
if $\log u(z)$ is upper semicontinuous and for any $j$ and for
any $z_k$, $k\ne j$, either the function $z_j\to\log u(z_1,\dots,z_p)$
is subharmonic or $\log u(z_1,\dots,z_p)\equiv-\infty$.
For such functions $u$ that satisfy the growth estimate
$$
\log u(z)\leqslant\sigma\prod_{j=1}^p(1+|z_{j,n_j+1}|)+N\left(\sum_{\substack{1\leqslant j\leqslant p\\ 1\leqslant k\leqslant n_j}} z_{j,k}^2\right)^{1/2}+c,\quad \sigma, N\geqslant0,\quad c\in\mathbb{R},
$$
theorems are proved about the equivalence of $L^\infty(L^q)$-norm
of restrictions $u\mid X$ and $u\mid E$ for some relatively dense
subset $E$ of $X$.
These theorems generalize well-known results of Cartwright
and Plancherel–Polya.
Citation:
B. Ya. Levin, V. N. Logvinenko, “On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets”, Investigations on linear operators and function theory. Part 17, Zap. Nauchn. Sem. LOMI, 170, "Nauka", Leningrad. Otdel., Leningrad, 1989, 157–175; J. Soviet Math., 63:2 (1993), 202–211
Linking options:
https://www.mathnet.ru/eng/znsl4459 https://www.mathnet.ru/eng/znsl/v170/p157
|
Statistics & downloads: |
Abstract page: | 314 | Full-text PDF : | 79 |
|