|
Zapiski Nauchnykh Seminarov LOMI, 1989, Volume 170, Pages 34–66
(Mi znsl4453)
|
|
|
|
This article is cited in 8 scientific papers (total in 9 papers)
Operator integration, perturbations and commutators
M. S. Birman, M. Z. Solomjak
Abstract:
Under mild conditions integral representations of the following kind are justified: $$ f(A_1)\cdot J-J\cdot f(A_0)=\iint\frac{f(\mu)-f(\lambda)}{\mu-\lambda}d \,E_1(\mu)(A_1J-JA_0)d \,E_0(\mu). \qquad{(*)} $$ Here $A_k$, $k=0,1$, is a self-adjoint operator on a Hilbert space $\mathcal{H}_k$, $J$ is an operator acting from $\mathcal{H}_0$ to $\mathcal{H}_1$; all operators are, in general, unbounded; $E_k$ is the spectral measure for $A_k$. On the basis of the representation ($*$) estimates of s-numbers of the operator $f(A_1)\cdot J-J\cdot f(A_0)$ in terms of the $s$-numbers of $A_1J-JA_0$ are given. Analogous results are obtained for commutators and anticommutators.
Citation:
M. S. Birman, M. Z. Solomjak, “Operator integration, perturbations and commutators”, Investigations on linear operators and function theory. Part 17, Zap. Nauchn. Sem. LOMI, 170, "Nauka", Leningrad. Otdel., Leningrad, 1989, 34–66; J. Soviet Math., 63:2 (1993), 129–148
Linking options:
https://www.mathnet.ru/eng/znsl4453 https://www.mathnet.ru/eng/znsl/v170/p34
|
Statistics & downloads: |
Abstract page: | 248 | Full-text PDF : | 99 |
|