Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 224, Pages 279–299 (Mi znsl4449)  

Poisson structures and integrable systems connected with graphs

A. L. Pirozersky

Saint-Petersburg State University
Abstract: Completely integrable systems related with graphs of a specific type are studied by the $r$-matrix method. The phase space of such a system is the space of connections on a graph. The nonlinear equations under consideration are Hamiltonian with respect to the Poisson bracket depending on the geometry of the graph and other structures. It is essential that the Poisson bracket be nonultralocal. An involute family of motion integrals is constructed. Explicit formulas for solutions of evolution equations are obtained in terms of solutions of a factorization problem. In the case of the group of loops, a polynomial anzatz for the Lax operator compatible with the Poisson bracket is constructed. Bibliography: 8 titles.
Received: 06.01.1995
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 88, Issue 2, Pages 292–305
DOI: https://doi.org/10.1007/BF02364991
Bibliographic databases:
Document Type: Article
UDC: 539.12
Language: Russian
Citation: A. L. Pirozersky, “Poisson structures and integrable systems connected with graphs”, Questions of quantum field theory and statistical physics. Part 13, Zap. Nauchn. Sem. POMI, 224, POMI, St. Petersburg, 1995, 279–299; J. Math. Sci. (New York), 88:2 (1998), 292–305
Citation in format AMSBIB
\Bibitem{Pir95}
\by A.~L.~Pirozersky
\paper Poisson structures and integrable systems connected with graphs
\inbook Questions of quantum field theory and statistical physics. Part~13
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 224
\pages 279--299
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1364855}
\zmath{https://zbmath.org/?q=an:0899.58021|0888.58013}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 88
\issue 2
\pages 292--305
\crossref{https://doi.org/10.1007/BF02364991}
Linking options:
  • https://www.mathnet.ru/eng/znsl4449
  • https://www.mathnet.ru/eng/znsl/v224/p279
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024