Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 239, Pages 45–60 (Mi znsl444)  

This article is cited in 7 scientific papers (total in 7 papers)

On a triangular factorization of positive operators

M. I. Belisheva, A. B. Pushnitskiib

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b V. A. Fock Institute of Physics, Saint-Petersburg State University
Full-text PDF (212 kB) Citations (7)
Abstract: The paper deals with an operator construction (so-called Amplitude Integral) working in the BC-method for the inverse problems. A continual analog of a matrix diagonal is introduced for a continuous operator and a pair of extending families of subspaces. The analog is represented via the AI. Its convergence is descussed; we demonstrate an example of the operator which doesn't possess a diagonal. A role of a diagonal in the problem of triangular factorization is clarified. A well-known result of the theory of matrices is that a factorization with fixed diagonal is unique. In the paper this result is generalized on a class of positive operators, the corresponding factor being given in the form of the AI. Relations between the AI and the classical operator integral (M. Krein and oth.) used to factorize operators $\mathbf1+{}$K (with compact K) are established.
Received: 21.05.1995
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 96, Issue 4, Pages 3312–3320
DOI: https://doi.org/10.1007/BF02172806
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: M. I. Belishev, A. B. Pushnitskii, “On a triangular factorization of positive operators”, Mathematical problems in the theory of wave propagation. Part 26, Zap. Nauchn. Sem. POMI, 239, POMI, St. Petersburg, 1997, 45–60; J. Math. Sci. (New York), 96:4 (1999), 3312–3320
Citation in format AMSBIB
\Bibitem{BelPus97}
\by M.~I.~Belishev, A.~B.~Pushnitskii
\paper On a triangular factorization of positive operators
\inbook Mathematical problems in the theory of wave propagation. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 239
\pages 45--60
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl444}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1700639}
\zmath{https://zbmath.org/?q=an:0935.47018}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 96
\issue 4
\pages 3312--3320
\crossref{https://doi.org/10.1007/BF02172806}
Linking options:
  • https://www.mathnet.ru/eng/znsl444
  • https://www.mathnet.ru/eng/znsl/v239/p45
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024