Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 134, Pages 15–33 (Mi znsl4426)  

This article is cited in 1 scientific paper (total in 1 paper)

Spectral expansion of certain automorphic functions and its number-theoretical applications

V. A. Bykovskii
Full-text PDF (679 kB) Citations (1)
Abstract: The sums
$$ \sum_{q=1}^\infty\sum_{\substack{t=1\\ t^2+\mathcal D\equiv 0\pmod q}}^q e^{2\pi i\frac{mt}q}h\left(\frac{2\pi m\sqrt \mathcal D}{q}\right),\quad \mathcal D^\frac s2\sum_{n=-\infty}^\infty\sigma_{-s}(n^2+\mathcal D)h\left(\frac{\sqrt{n^2+\mathcal D}}{\sqrt{\mathcal D}}\right), $$
where $\mathcal D>0$ and $\sigma_s(n)=\sum_{d|n}d^s$, а $h$ are represented in terms of spectral characteristics of the automorphic Laplacian for the full modular group. With its help the asymptotic formulae for the sums of the type $\sum_{|n|\leqslant P}\sigma_{-s}(n^2+\mathcal D)$ as $P\to\infty$ are obtained. These formulae generalize the author's earlier result $\sum_{|n|<P}\mathcal T(n^2+\mathcal D)=c_1(\mathcal D)P\log P+c_0(\mathcal D)P+O(P^\frac23\log^\frac23P).$
Bibliographic databases:
Document Type: Article
UDC: 5II.3+5I7.43+5I9.45
Language: Russian
Citation: V. A. Bykovskii, “Spectral expansion of certain automorphic functions and its number-theoretical applications”, Automorphic functions and number theory. Part II, Zap. Nauchn. Sem. LOMI, 134, "Nauka", Leningrad. Otdel., Leningrad, 1984, 15–33
Citation in format AMSBIB
\Bibitem{Byk84}
\by V.~A.~Bykovskii
\paper Spectral expansion of certain automorphic functions and its number-theoretical applications
\inbook Automorphic functions and number theory. Part~II
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 134
\pages 15--33
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4426}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=741852}
\zmath{https://zbmath.org/?q=an:0536.10024}
Linking options:
  • https://www.mathnet.ru/eng/znsl4426
  • https://www.mathnet.ru/eng/znsl/v134/p15
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:312
    Full-text PDF :110
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024