Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 133, Pages 126–132 (Mi znsl4414)  

Spherically symmetric solutions of the euclidean Yang–Mills equations

L. V. Kapitanski, O. A. Ladyzhenskaya
Full-text PDF (299 kB) Citations (1)
Abstract: We consider the euclidean Yang–Mills equations with the structural group $SU(2)$. The functionals of the Yang–Mills action and of topological charge are invariant under the transformations: $A_\mu(x)\,dx_\mu\to A_\mu(gx)\,d(gx)_\mu$, where $g$ runs over the set of quaternions with $|g|=1$, and $gx$ stands for the multiplication of quaternions $x=x_4+ix_1+jx_2+kx_3$. The $SU(2)$-symmetry allows us to use the Coleman's principle. Then, for gauge potentials $A_\mu$ we obtain the following spherically symmetric Anzatz:
\begin{gather} A_\mu(x)=\frac{1}{|x|}f_\alpha(\ln|x|^2)\frac{1}{|x|}(\delta_{4\alpha}x_\mu-\delta_{4\mu}x_\alpha+\delta_{\alpha\mu}x_4+\varepsilon_{\alpha\mu\gamma4}x_\gamma), \end{gather}
The Yang–Mills equations and the duality equations reduce to systems of ODE on the functions $f_\alpha^a(\mathcal T)$. We prove that for the Y–M equations every solution of the form (1) with finite action and positive (negative) charge is necessarilly a solution of the duality equations $F=*F$ (accordingly, $F=-*F$), and has a unit topological charge. Besides, we describe explicitly all the solutions of the form (1) for the duality equations; the 1-instanton solution of Belavin et al. is among them.
Bibliographic databases:
Document Type: Article
UDC: 519.4
Language: Russian
Citation: L. V. Kapitanski, O. A. Ladyzhenskaya, “Spherically symmetric solutions of the euclidean Yang–Mills equations”, Differential geometry, Lie groups and mechanics. Part VI, Zap. Nauchn. Sem. LOMI, 133, "Nauka", Leningrad. Otdel., Leningrad, 1984, 126–132
Citation in format AMSBIB
\Bibitem{KapLad84}
\by L.~V.~Kapitanski, O.~A.~Ladyzhenskaya
\paper Spherically symmetric solutions of the euclidean Yang--Mills equations
\inbook Differential geometry, Lie groups and mechanics. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 133
\pages 126--132
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4414}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=742153}
\zmath{https://zbmath.org/?q=an:0536.58009}
Linking options:
  • https://www.mathnet.ru/eng/znsl4414
  • https://www.mathnet.ru/eng/znsl/v133/p126
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024