Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 133, Pages 51–62 (Mi znsl4409)  

Construction of “Hauptfunktion”, solution of the equations of Schwarz and Puchs for a surface of zero genus by the methods of spectral theory of automorphic functions

A. B. Venkov
Abstract: Fuchsian and Schwarzian equations with $n$ singularities on a surface of zero genus are studied. The methods of spectral theory of automorphic functions are used to construct explicity the Klein invariant for an arbitrary Fuchsian group of genus 0 with fundamental domain of finite area. This result is used to derive explicit formula expressing singularities and accessory parameters for Fuchsian and Schwarzian equations in terms of the corresponding Fuchsian group.
Bibliographic databases:
Document Type: Article
UDC: 517.862
Language: Russian
Citation: A. B. Venkov, “Construction of “Hauptfunktion”, solution of the equations of Schwarz and Puchs for a surface of zero genus by the methods of spectral theory of automorphic functions”, Differential geometry, Lie groups and mechanics. Part VI, Zap. Nauchn. Sem. LOMI, 133, "Nauka", Leningrad. Otdel., Leningrad, 1984, 51–62
Citation in format AMSBIB
\Bibitem{Ven84}
\by A.~B.~Venkov
\paper Construction of ``Hauptfunktion'', solution of the equations of Schwarz and Puchs for a~surface of zero genus by the methods of spectral theory of automorphic functions
\inbook Differential geometry, Lie groups and mechanics. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 133
\pages 51--62
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=742148}
\zmath{https://zbmath.org/?q=an:0542.34011}
Linking options:
  • https://www.mathnet.ru/eng/znsl4409
  • https://www.mathnet.ru/eng/znsl/v133/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024