Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 223, Pages 227–250 (Mi znsl4389)  

This article is cited in 4 scientific papers (total in 4 papers)

Combinatorial and algorithmic methods

Asymptotics of random partitions of a set

Yu. V. Yakubovich

Saint-Petersburg State University
Abstract: This paper contains two results on the asymptotic behavior of uniform probability measure on partitions of a finite set as its cardinality tends to infinity. The first one states that there exists a normalization of the corresponding Young diagrams such that the induced measure has a weak limit. This limit is shown to be a $\delta$-measure supported by the unit square (Theorem 1). It implies that the majority of partition blocks have approximately the same length. Theorem 2 clarifies the limit distribution of these blocks.
The techniques used can also be useful for deriving a range of analogous results. Bibliography: 13 titles.
Received: 15.01.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 6, Pages 4124–4137
DOI: https://doi.org/10.1007/BF02355807
Bibliographic databases:
Document Type: Article
UDC: 519.217
Language: Russian
Citation: Yu. V. Yakubovich, “Asymptotics of random partitions of a set”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Zap. Nauchn. Sem. POMI, 223, POMI, St. Petersburg, 1995, 227–250; J. Math. Sci. (New York), 87:6 (1997), 4124–4137
Citation in format AMSBIB
\Bibitem{Yak95}
\by Yu.~V.~Yakubovich
\paper Asymptotics of random partitions of a~set
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~I
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 223
\pages 227--250
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4389}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1374322}
\zmath{https://zbmath.org/?q=an:0909.60017|0887.60017}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 6
\pages 4124--4137
\crossref{https://doi.org/10.1007/BF02355807}
Linking options:
  • https://www.mathnet.ru/eng/znsl4389
  • https://www.mathnet.ru/eng/znsl/v223/p227
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024