Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 237, Pages 194–226 (Mi znsl438)  

This article is cited in 25 scientific papers (total in 25 papers)

Fourier coefficients of cusp forms and automorphic $L$-functions

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: In the beginning of the paper, we review the summation formulas for the Fourier coefficients of holomorphic cusp forms for $\Gamma$, $\Gamma=\operatorname{SL}(2,\mathbb Z)$, associated with $L$-functions of three and four Hecke eigenforms. Continuing the known works on the $L$-functions $L_{f,\varphi,\psi}(s)$ of three Hecke eigenforms, we prove their new properties in the special case of $L_{f,f,\varphi}(s)$. These results are applied to proving an analogue of the Siegel theorem for the $L$-function $L_f(s)$ of the Hecke eigenform $f(z)$ for $\Gamma$ (with respect of weight) and to deriving a new summation formula. Let f(z) be a Hecke eigenform for $\Gamma$ of even weight $2k$ with Fourier expansion $f(z)=\sum^\infty_{n=1}a(n)e^{2\pi inz}$. We study a weight-uniform analogue of the Hardy problem on the dehavior of the sum $\sum_{p\le x}a(p)\log p$ and prove new estimates from for the sum $\sum_{n\le x}a(F(n))^2$, where $F(x)$ is a polynomial with integral coefficients of special form (in practicular, $F(x)$ is an Abelian polynomial). Finally, we obtain the lower estimate
$$ L_4(1)+|L'_4(1)|\gg\frac1{(\log k)^c}, $$
where $L_4(s)$ is the fourth symmetric power of the $L$-function $L_f(s)$ and $c$ is a constant.
Received: 16.12.1996
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 95, Issue 3, Pages 2295–2316
DOI: https://doi.org/10.1007/BF02172473
Bibliographic databases:
UDC: 511.466+517.863respect to weight)
Language: Russian
Citation: O. M. Fomenko, “Fourier coefficients of cusp forms and automorphic $L$-functions”, Analytical theory of numbers and theory of functions. Part 14, Zap. Nauchn. Sem. POMI, 237, POMI, St. Petersburg, 1997, 194–226; J. Math. Sci. (New York), 95:3 (1999), 2295–2316
Citation in format AMSBIB
\Bibitem{Fom97}
\by O.~M.~Fomenko
\paper Fourier coefficients of cusp forms and automorphic $L$-functions
\inbook Analytical theory of numbers and theory of functions. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 237
\pages 194--226
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691291}
\zmath{https://zbmath.org/?q=an:0993.11023}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 95
\issue 3
\pages 2295--2316
\crossref{https://doi.org/10.1007/BF02172473}
Linking options:
  • https://www.mathnet.ru/eng/znsl438
  • https://www.mathnet.ru/eng/znsl/v237/p194
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024