|
Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 131, Pages 106–113
(Mi znsl4362)
|
|
|
|
On the theory of Maxwell liquids. II
A. P. Oskolkov
Abstract:
The classical local solvability of the periodic boundary-value problem and Cauchy problem for the system
\begin{gather}
\frac{dv}{dt}+v_k\frac{\partial v}{\partial x_k}-\Delta u+\operatorname{grad} p=f_1,\;v=\nu_1u+\nu_2\frac{\partial u}{\partial t},\;\operatorname{div} v=0,\;\nu_1, \nu_2>0,
\end{gather}
is proved. The system (1) describes motions of Maxwell liquids.
Citation:
A. P. Oskolkov, “On the theory of Maxwell liquids. II”, Questions of quantum field theory and statistical physics. Part 4, Zap. Nauchn. Sem. LOMI, 131, "Nauka", Leningrad. Otdel., Leningrad, 1983, 106–113
Linking options:
https://www.mathnet.ru/eng/znsl4362 https://www.mathnet.ru/eng/znsl/v131/p106
|
Statistics & downloads: |
Abstract page: | 144 | Full-text PDF : | 83 |
|