|
Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 131, Pages 72–79
(Mi znsl4355)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
On the classical solvability of the Dlrichlet problem for the Monge–Ampère equation
N. M. Ivochkina
Abstract:
It is proved that the problem $\det(u_{xx})=f(x, u, u_x)\geqslant\nu>0$, $u|_{\partial\Omega}=\phi(x)$ is solvable in $C^{k+2+\alpha}(\bar\Omega)$, $k\geqslant2$, $0<\alpha<1$ if the natural connection between $\partial\Omega$-curvature and $|p|$-growth of $f(x, u, p)$ is valid.
Citation:
N. M. Ivochkina, “On the classical solvability of the Dlrichlet problem for the Monge–Ampère equation”, Questions of quantum field theory and statistical physics. Part 4, Zap. Nauchn. Sem. LOMI, 131, "Nauka", Leningrad. Otdel., Leningrad, 1983, 72–79
Linking options:
https://www.mathnet.ru/eng/znsl4355 https://www.mathnet.ru/eng/znsl/v131/p72
|
|