Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 222, Pages 293–306 (Mi znsl4318)  

This article is cited in 1 scientific paper (total in 1 paper)

Local spectral multiplicity of a linear operator with respect to a measure

D. V. Yakubovich

St. Petersburg State University, Research Institute of Mathematics and Mechanics
Full-text PDF (667 kB) Citations (1)
Abstract: Let $T$ be a bounded linear operator in a separable Banach space $\mathcal X$ and let $\mu$ be a nonnegative measure in $\mathbb C$ with compact support. A function $m_{T,\mu}$ is considered that is defined $\mu$-a.e. and has nonnegative integers or $+\infty$ as values. This function is called the local multiplicity of $T$ with respect to the measure $\mu$. This function has some natural properties, it is invariant under similarity and quasisimilarity; the local spectral multiplicity of a direct sum of operators equals the sum of local multiplicities, and so on. The definition is given in terms of the maximal diagonalization of the operator $T$. It is shown that this diagonalization is unique in the natural sense. A notion of a system of generalized eigenvectors, dual to the notion of diagonalization, is discussed. Some ezamples of evaluation of the local spectral multiplicity function are given. Bibliography: 10 titles.
Received: 01.02.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 5, Pages 3971–3979
DOI: https://doi.org/10.1007/BF02355834
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: D. V. Yakubovich, “Local spectral multiplicity of a linear operator with respect to a measure”, Investigations on linear operators and function theory. Part 23, Zap. Nauchn. Sem. POMI, 222, POMI, St. Petersburg, 1995, 293–306; J. Math. Sci. (New York), 87:5 (1997), 3971–3979
Citation in format AMSBIB
\Bibitem{Yak95}
\by D.~V.~Yakubovich
\paper Local spectral multiplicity of a~linear operator with respect to a~measure
\inbook Investigations on linear operators and function theory. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 222
\pages 293--306
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4318}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1360002}
\zmath{https://zbmath.org/?q=an:0909.47014|0886.47014}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 5
\pages 3971--3979
\crossref{https://doi.org/10.1007/BF02355834}
Linking options:
  • https://www.mathnet.ru/eng/znsl4318
  • https://www.mathnet.ru/eng/znsl/v222/p293
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024