Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 222, Pages 78–123 (Mi znsl4311)  

On sets of uniqueness for harmonic functions in the unit circle

Yu. Ya. Vymenets

Saint-Petersburg State University
Abstract: The results of this paper show that the structure of sets mentioned in the title is not trivial. For example, it is shown that there exist countable sets of uniqueness for logarithmic potential, i.e., closed countable subsets $E$ of the unit circle $\mathbb T$ such that
$$ f\in C(\mathbb T),\ f\mid_E=0,\ U^f\mid_E=0\ \Rightarrow f\equiv0. $$
Here $U^f(z)=\frac1\pi\int_0^{2\pi}f(e^{i\theta})\log\frac1{|z-e^{i\theta}|}\,d\theta$. On the other hand, it is shoum that every countable porous closed subset of $\mathbb T$ is a nonuniqueness set. Bibliography: 9 titles.
Received: 17.02.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 5, Pages 3828–3858
DOI: https://doi.org/10.1007/BF02355827
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: Yu. Ya. Vymenets, “On sets of uniqueness for harmonic functions in the unit circle”, Investigations on linear operators and function theory. Part 23, Zap. Nauchn. Sem. POMI, 222, POMI, St. Petersburg, 1995, 78–123; J. Math. Sci. (New York), 87:5 (1997), 3828–3858
Citation in format AMSBIB
\Bibitem{Vym95}
\by Yu.~Ya.~Vymenets
\paper On sets of uniqueness for harmonic functions in the unit circle
\inbook Investigations on linear operators and function theory. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 222
\pages 78--123
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1359995}
\zmath{https://zbmath.org/?q=an:0909.31003|0887.31003}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 5
\pages 3828--3858
\crossref{https://doi.org/10.1007/BF02355827}
Linking options:
  • https://www.mathnet.ru/eng/znsl4311
  • https://www.mathnet.ru/eng/znsl/v222/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:112
    Full-text PDF :90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024