Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 222, Pages 5–17 (Mi znsl4308)  

This article is cited in 17 scientific papers (total in 17 papers)

On the existence of nontangential boundary values of pseudocontinuable functions

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: Let $\theta$ be an inner functions, let $\theta^*(H^2)=H^2\ominus\theta H^2$, and let $\mu$ be a finite Borel measure on the unit circle $\mathbb T$. Our main purpose is to prove that, if every function $f\in\theta^*(H^2)$ can be defined $\mu$-almost everywhere on $\mathbb T$ in a certain (weak) natural sense, then every function $f\in\theta^*(H^2)$ has finite nontangential boundary values $\mu$-almost everywhere on $\mathbb T$. A similar result is true for the $\mathcal L^p$-analog of $\theta^*(H^2)$ ($p>0$). Bibliography: 17 titles.
Received: 11.01.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 5, Pages 3781–3787
DOI: https://doi.org/10.1007/BF02355824
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. B. Aleksandrov, “On the existence of nontangential boundary values of pseudocontinuable functions”, Investigations on linear operators and function theory. Part 23, Zap. Nauchn. Sem. POMI, 222, POMI, St. Petersburg, 1995, 5–17; J. Math. Sci. (New York), 87:5 (1997), 3781–3787
Citation in format AMSBIB
\Bibitem{Ale95}
\by A.~B.~Aleksandrov
\paper On the existence of nontangential boundary values of pseudocontinuable functions
\inbook Investigations on linear operators and function theory. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 222
\pages 5--17
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4308}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1359992}
\zmath{https://zbmath.org/?q=an:0909.30026|0895.30023}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 5
\pages 3781--3787
\crossref{https://doi.org/10.1007/BF02355824}
Linking options:
  • https://www.mathnet.ru/eng/znsl4308
  • https://www.mathnet.ru/eng/znsl/v222/p5
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024