|
Zapiski Nauchnykh Seminarov POMI, 1995, Volume 222, Pages 5–17
(Mi znsl4308)
|
|
|
|
This article is cited in 17 scientific papers (total in 17 papers)
On the existence of nontangential boundary values of pseudocontinuable functions
A. B. Aleksandrov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $\theta$ be an inner functions, let $\theta^*(H^2)=H^2\ominus\theta H^2$, and let $\mu$ be a finite Borel measure on the unit circle $\mathbb T$. Our main purpose is to prove that, if every function $f\in\theta^*(H^2)$ can be defined $\mu$-almost everywhere on $\mathbb T$ in a certain (weak) natural sense, then every function $f\in\theta^*(H^2)$ has finite nontangential boundary values $\mu$-almost everywhere on $\mathbb T$. A similar result is true for the $\mathcal L^p$-analog of $\theta^*(H^2)$ ($p>0$). Bibliography: 17 titles.
Received: 11.01.1995
Citation:
A. B. Aleksandrov, “On the existence of nontangential boundary values of pseudocontinuable functions”, Investigations on linear operators and function theory. Part 23, Zap. Nauchn. Sem. POMI, 222, POMI, St. Petersburg, 1995, 5–17; J. Math. Sci. (New York), 87:5 (1997), 3781–3787
Linking options:
https://www.mathnet.ru/eng/znsl4308 https://www.mathnet.ru/eng/znsl/v222/p5
|
Statistics & downloads: |
Abstract page: | 243 | Full-text PDF : | 94 |
|