Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 221, Pages 226–234 (Mi znsl4305)  

This article is cited in 4 scientific papers (total in 4 papers)

A priori error estimates of variational-difference methods for Hencky plasticity problems

S. I. Repin

Saint-Petersburg State Technical University
Full-text PDF (395 kB) Citations (4)
Abstract: In this article, convergence of equilibrium finite-element approximations for variational problems of the Hencky plasticity is analyzed. To obtain a priori error estimates, two regularized problems are considered and additional differentiability properties of their solutions are investigated. This allows us to prove that there is a relation between the parameters of regularization and sampling such that equilibrium approximations of the regularized problems produce a sequence of tensor-functions converging to the solution of the perfectly elasto-plastic problem. Convergence estimates are established. Bibliography: 12 titles.
Received: 16.01.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 2, Pages 3421–3427
DOI: https://doi.org/10.1007/BF02355592
Bibliographic databases:
Document Type: Article
UDC: 517.94
Language: Russian
Citation: S. I. Repin, “A priori error estimates of variational-difference methods for Hencky plasticity problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Zap. Nauchn. Sem. POMI, 221, POMI, St. Petersburg, 1995, 226–234; J. Math. Sci. (New York), 87:2 (1997), 3421–3427
Citation in format AMSBIB
\Bibitem{Rep95}
\by S.~I.~Repin
\paper A priori error estimates of variational-difference methods for Hencky plasticity problems
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 221
\pages 226--234
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4305}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1359758}
\zmath{https://zbmath.org/?q=an:0927.74080|0894.73228}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 2
\pages 3421--3427
\crossref{https://doi.org/10.1007/BF02355592}
Linking options:
  • https://www.mathnet.ru/eng/znsl4305
  • https://www.mathnet.ru/eng/znsl/v221/p226
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024