Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 221, Pages 185–207 (Mi znsl4303)  

This article is cited in 7 scientific papers (total in 7 papers)

Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations

A. P. Oskolkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (923 kB) Citations (7)
Abstract: In this paper, we study some nonlocal problems for the Kelvin–Voight equations (1) and the penalized Kelvin–Voight equations (2): the first and second initial boundary-value problems and the first and second time periodic boundary problems. We prove that these problems have global smooth solutions of the class $W^1_\infty(\mathbb R^+;W_2^{2+k}(\Omega))$, $k=1,2,\dots$; $\Omega\subset\mathbb R^3$. Bibliography: 25 titles.
Received: 01.02.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 2, Pages 3393–3408
DOI: https://doi.org/10.1007/BF02355590
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. P. Oskolkov, “Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations”, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Zap. Nauchn. Sem. POMI, 221, POMI, St. Petersburg, 1995, 185–207; J. Math. Sci. (New York), 87:2 (1997), 3393–3408
Citation in format AMSBIB
\Bibitem{Osk95}
\by A.~P.~Oskolkov
\paper Nonlocal problems for the equations of Kelvin--Voight fluids and their $\varepsilon$-approximations
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 221
\pages 185--207
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1359756}
\zmath{https://zbmath.org/?q=an:0927.76005|0922.76053}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 2
\pages 3393--3408
\crossref{https://doi.org/10.1007/BF02355590}
Linking options:
  • https://www.mathnet.ru/eng/znsl4303
  • https://www.mathnet.ru/eng/znsl/v221/p185
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :116
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024