|
Zapiski Nauchnykh Seminarov POMI, 1995, Volume 221, Pages 127–144
(Mi znsl4300)
|
|
|
|
This article is cited in 5 scientific papers (total in 6 papers)
Flows generated by symmetric functions of the eigenvalues of the Hessian
N. Ivochkinaa, O. Ladyzhenskayab a С.-Петербургский государственный архитектурно-строительный университет
b С.-Петербургское отделение Математического института им. В. А. Стеклова РАН
Abstract:
The global unique solvability of the first initial-boundary value problem for fully nonlinear equations of the form
$$
-u_t+f(\lambda_1[u],\dots,\lambda_n[u])=g
$$
is proved. Here, $\lambda_i[u]$, $i=1,\dots,n$, are eigenvalues of the Hessian $u_{xx}$ and $f$ is a symmetric function satisfying some conditions. Bibliography: 7 titles.
Received: 10.04.1995
Citation:
N. Ivochkina, O. Ladyzhenskaya, “Flows generated by symmetric functions of the eigenvalues of the Hessian”, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Zap. Nauchn. Sem. POMI, 221, POMI, St. Petersburg, 1995, 127–144; J. Math. Sci. (New York), 87:2 (1997), 3353–3365
Linking options:
https://www.mathnet.ru/eng/znsl4300 https://www.mathnet.ru/eng/znsl/v221/p127
|
Statistics & downloads: |
Abstract page: | 162 | Full-text PDF : | 70 |
|