Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 221, Pages 75–82 (Mi znsl4297)  

On the diffraction of high-frequency waves by arbitrary shape cone. Neumann case

Daniel Dement'ev

С.-Петербургский государственный университет
Abstract: In this paper we consider a problem of diffraction a plane acoustic wave by a arbitrary shape cone. The spherical wave is created at the result of the scattering by the cone vertex. Our problem consist of a calculation of this wave in a high frequency approximation. The calculations are based on a Smyshlyaev's formula (see [2], [3]). The acoustic wave potential satisfies to Neumann's condition on the boundary of the cone. A same problem (in Dirichlet's boundary condition) was considered in [8]. In this paper we can use the method of calculation near to method used in [8]. Bibliography: 8 titles.
Received: 19.12.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 2, Pages 3316–3321
DOI: https://doi.org/10.1007/BF02355584
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: Daniel Dement'ev, “On the diffraction of high-frequency waves by arbitrary shape cone. Neumann case”, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Zap. Nauchn. Sem. POMI, 221, POMI, St. Petersburg, 1995, 75–82; J. Math. Sci. (New York), 87:2 (1997), 3316–3321
Citation in format AMSBIB
\Bibitem{Dem95}
\by Daniel~Dement'ev
\paper On the diffraction of high-frequency waves by arbitrary shape cone. Neumann case
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 221
\pages 75--82
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1359750}
\zmath{https://zbmath.org/?q=an:0937.35514|0900.35280}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 2
\pages 3316--3321
\crossref{https://doi.org/10.1007/BF02355584}
Linking options:
  • https://www.mathnet.ru/eng/znsl4297
  • https://www.mathnet.ru/eng/znsl/v221/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024