|
Zapiski Nauchnykh Seminarov POMI, 1995, Volume 221, Pages 58–66
(Mi znsl4295)
|
|
|
|
This article is cited in 21 scientific papers (total in 21 papers)
Continuous dependence of attractors on the shape of domain
A. V. Babina, S. Yu. Pilyuginb a Московский институт инженеров транспорта
b С.-Петербургский государственный университет
Abstract:
Let $\Omega_0$ be a bounded domain in $\mathbb R^n$, let $\mathcal G$ be a family of diffeomorphisms, and let $\Omega_G=G(\Omega_0)$ for $G\in\mathcal G$. Denote by $\Sigma_t(G)$ the semigroup generated by a fixed parabolic PDE with Dirichlet boundary conditions on the boundary of $\Omega_G$. Let $A_G$ be the global attractor $\Sigma_t(G)$. Conditions are given under which a generic diffeomorphism $G\in\mathcal G$ is a continuity point of the map $G\mapsto A_G$. Bibliography: 12 titles.
Received: 05.01.1995
Citation:
A. V. Babin, S. Yu. Pilyugin, “Continuous dependence of attractors on the shape of domain”, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Zap. Nauchn. Sem. POMI, 221, POMI, St. Petersburg, 1995, 58–66; J. Math. Sci. (New York), 87:2 (1997), 3304–3310
Linking options:
https://www.mathnet.ru/eng/znsl4295 https://www.mathnet.ru/eng/znsl/v221/p58
|
Statistics & downloads: |
Abstract page: | 163 | Full-text PDF : | 70 |
|