Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 221, Pages 30–57 (Mi znsl4294)  

This article is cited in 1 scientific paper (total in 1 paper)

On the regularity of solutions of model nonlinear elliptic systems with the oblique derivative type boundary condition

A. A. Arkhipova

Saint-Petersburg State University
Full-text PDF (996 kB) Citations (1)
Abstract: Properties of generalized solutions of model nonlinear elliptic systems of second order are studied in the semiball $B^+_1=B_1(0)\cap\{x_n>0\}\subset\mathbb R^n$, with the oblique derivative type boundary condition on $\Gamma_1=B_1(0)\cap\{x_n=0\}$. For solutions $u\in H^1(B_1^+)$ of systems of the form $\frac d{dx_\alpha}a^k_\alpha(u_x)=0$, $k\le N$, it is proved that the derivatives $u_x$ are Hölder in $(B^+_1\cup\Gamma_1)\setminus\Sigma$, where $\mathcal H_{n-p}(\Sigma)=0$, $p>2$. It is shown for continuous solutions $u$ from $H^1(B_1^+)$ of systems $\frac d{dx_\alpha}a^k_\alpha(u,u_x)=0$ that the derivatives $u_x$ are Hölder on the set $(B^+_1\cup\Gamma_1)\setminus\Sigma$, $\dim_\mathcal H\Sigma\le n-2$. Bibliography: 13 titles.
Received: 01.02.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 2, Pages 3284–3303
DOI: https://doi.org/10.1007/BF02355581
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. A. Arkhipova, “On the regularity of solutions of model nonlinear elliptic systems with the oblique derivative type boundary condition”, Boundary-value problems of mathematical physics and related problems of function theory. Part 26, Zap. Nauchn. Sem. POMI, 221, POMI, St. Petersburg, 1995, 30–57; J. Math. Sci. (New York), 87:2 (1997), 3284–3303
Citation in format AMSBIB
\Bibitem{Ark95}
\by A.~A.~Arkhipova
\paper On the regularity of solutions of model nonlinear elliptic systems with the oblique derivative type boundary condition
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~26
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 221
\pages 30--57
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1359747}
\zmath{https://zbmath.org/?q=an:0927.35016|0886.35033}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 2
\pages 3284--3303
\crossref{https://doi.org/10.1007/BF02355581}
Linking options:
  • https://www.mathnet.ru/eng/znsl4294
  • https://www.mathnet.ru/eng/znsl/v221/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024