Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 129, Pages 43–84 (Mi znsl4285)  

This article is cited in 11 scientific papers (total in 11 papers)

Convolution of the Fourier coefficients of Eisentein–Maas series

N. V. Kuznetsov
Abstract: The convolution is determinate as the sum
$$ N^{s-1}\sum_{n\geqslant 1}\tau_\nu(n)\left(\sigma_{1-2s}(n-N)w_0\left(\sqrt\frac nN\right)+\sigma_{1-2s}(n+N)w_1\left(\sqrt\frac nN\right)\right), $$
where $\tau_\nu(n)=n^{\nu-\frac12}\sigma_{1-2\nu}(n)$ for $n\ne0$ $\sigma_\nu(n)=\sum_{d|n, d>0}d^\nu$ and $w_0$, $w_1$ are arbitrary smooth functions.
The question: how to express this sum as a combination of the $N$'s Fourier coefficients of the eigenfunctions of the automorphic Laplacian? The answer is given in the terms of the biliear form of Hecke's series associated with the eigenfunctions of automorphic Laplacian and the regular cusp forms.
The final identity can give new opportunitys to the problem of moments of the Riemann zeta-functions.
Bibliographic databases:
Document Type: Article
UDC: 511.3+517.43+519.45
Language: Russian
Citation: N. V. Kuznetsov, “Convolution of the Fourier coefficients of Eisentein–Maas series”, Automorphic functions and number theory. Part I, Zap. Nauchn. Sem. LOMI, 129, "Nauka", Leningrad. Otdel., Leningrad, 1983, 43–84
Citation in format AMSBIB
\Bibitem{Kuz83}
\by N.~V.~Kuznetsov
\paper Convolution of the Fourier coefficients of Eisentein--Maas series
\inbook Automorphic functions and number theory. Part~I
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 129
\pages 43--84
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=703008}
\zmath{https://zbmath.org/?q=an:0496.10013}
Linking options:
  • https://www.mathnet.ru/eng/znsl4285
  • https://www.mathnet.ru/eng/znsl/v129/p43
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :241
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024