Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 220, Pages 49–71 (Mi znsl4280)  

Randomized proofs in arithmetic

E. Ya. Dantsin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: A randomized proof system for arithmetic is introduced. A proof of an arithmetical formula is defined as its derivation from the axioms of arithmetic by the standard rules of inference of arithmetic and also one more rule which we call the random substitution rule. Such proofs can be regarded as a special kind of interactive proof and, more exactly, as a special kind of the Arthur–Merlin proofs. The main result of the paper shows that a proof in arithmetic with the random substitution rule can be considerably shorter than an arithmetical proof of the same formula. Namely, there exists a set or formulas such that (i) these fo nulas are provable in arithmetic but, unless $\mathrm{PSPACE}=\mathrm{NP}$, do not have polynomially long proofs; (ii) these proofs have polynomially long proofs in arithmetic with random substitution (whatever random numbers appear) and the probability of error of these proofs is exponentially small. Bibliography: 10 titles.
Received: 18.11.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 1, Pages 3209–3220
DOI: https://doi.org/10.1007/BF02358994
Bibliographic databases:
Document Type: Article
UDC: 510.64
Language: Russian
Citation: E. Ya. Dantsin, “Randomized proofs in arithmetic”, Studies in constructive mathematics and mathematical logic. Part IX, Zap. Nauchn. Sem. POMI, 220, POMI, St. Petersburg, 1995, 49–71; J. Math. Sci. (New York), 87:1 (1997), 3209–3220
Citation in format AMSBIB
\Bibitem{Dan95}
\by E.~Ya.~Dantsin
\paper Randomized proofs in arithmetic
\inbook Studies in constructive mathematics and mathematical logic. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 220
\pages 49--71
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4280}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1374095}
\zmath{https://zbmath.org/?q=an:0934.03075}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 1
\pages 3209--3220
\crossref{https://doi.org/10.1007/BF02358994}
Linking options:
  • https://www.mathnet.ru/eng/znsl4280
  • https://www.mathnet.ru/eng/znsl/v220/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:118
    Full-text PDF :38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024