Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 220, Pages 36–48 (Mi znsl4279)  

This article is cited in 2 scientific papers (total in 2 papers)

Infinite sets of primes, admitting Diophantine representations in eight variables

M. A. Vsemirnov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (560 kB) Citations (2)
Abstract: The existence of infinite sets of primes which can be repesented as the sets of positive values of some polynomials in a small number of variables is discussed. (All variables range over positive integers.) It is proved (noneffectively) that there exists such a set, which has a representation with eight variables. This number of variables is smaller than in the best universal construction known today, which is ten. Also, some improvements of well-known technical lemmas are given. Bibliography: 16 titles.
Received: 25.02.1994
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 1, Pages 3200–3208
DOI: https://doi.org/10.1007/BF02358993
Bibliographic databases:
Document Type: Article
UDC: 511.5+511.2
Language: Russian
Citation: M. A. Vsemirnov, “Infinite sets of primes, admitting Diophantine representations in eight variables”, Studies in constructive mathematics and mathematical logic. Part IX, Zap. Nauchn. Sem. POMI, 220, POMI, St. Petersburg, 1995, 36–48; J. Math. Sci. (New York), 87:1 (1997), 3200–3208
Citation in format AMSBIB
\Bibitem{Vse95}
\by M.~A.~Vsemirnov
\paper Infinite sets of primes, admitting Diophantine representations in eight variables
\inbook Studies in constructive mathematics and mathematical logic. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 220
\pages 36--48
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1374094}
\zmath{https://zbmath.org/?q=an:0932.11078}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 1
\pages 3200--3208
\crossref{https://doi.org/10.1007/BF02358993}
Linking options:
  • https://www.mathnet.ru/eng/znsl4279
  • https://www.mathnet.ru/eng/znsl/v220/p36
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024