Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 227, Pages 113–118 (Mi znsl4271)  

This article is cited in 5 scientific papers (total in 5 papers)

On generalized integral representations over Dedekind rings

D. K. Faddeev
Full-text PDF (285 kB) Citations (5)
Abstract: The present paper develops the ideas presented in [1].
Let $\mathfrak o$ be a Dedeking ring, and let $\Lambda$ be a finitely generated algebra over $\mathfrak o$. An integral representation in the broad sense of the ring $\Lambda$ over $\mathfrak o$ is a homomorphism of $\Lambda$ to the endomorphism ring of a finitely generated module over $\mathfrak o$. A representation in the restricted sense is a representation by matrices over $\mathfrak o$. Thus, the problem of describing the integral representations over $\mathfrak o$ is subdivided into the following two problems: the description of representations in the broad sense and the selection of them of representations in the restricted sense. It is proved that any representation of $\Lambda$ by matrices over the field $k$ of fractions of the ring $\mathfrak o$ is equivalent over $k$ to an integral representation in the broad sense. This fact simplifies the problem of describing the representations in the broad sense. A representation is equivalent to a representation in the restricted sense if its degree over $k$ and the order of the ideal class group of the ring $\mathfrak o$ are relatively prime, or if it is the direct sum of $h$ copies of one and the same representation over $k$, where $h$ is the exponent of the ideal class group of $\mathfrak o$. Bibliography: 3 titles.
Received: 10.02.1995
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 89, Issue 2, Pages 1154–1158
DOI: https://doi.org/10.1007/BF02355865
Bibliographic databases:
Document Type: Article
UDC: 512.552.8
Language: Russian
Citation: D. K. Faddeev, “On generalized integral representations over Dedekind rings”, Problems in the theory of representations of algebras and groups. Part 4, Zap. Nauchn. Sem. POMI, 227, POMI, St. Petersburg, 1995, 113–118; J. Math. Sci. (New York), 89:2 (1998), 1154–1158
Citation in format AMSBIB
\Bibitem{Fad95}
\by D.~K.~Faddeev
\paper On generalized integral representations over Dedekind rings
\inbook Problems in the theory of representations of algebras and groups. Part~4
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 227
\pages 113--118
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4271}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1374565}
\zmath{https://zbmath.org/?q=an:0999.16500}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 89
\issue 2
\pages 1154--1158
\crossref{https://doi.org/10.1007/BF02355865}
Linking options:
  • https://www.mathnet.ru/eng/znsl4271
  • https://www.mathnet.ru/eng/znsl/v227/p113
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024