Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 227, Pages 9–14 (Mi znsl4258)  

Sufficient conditions for the existence of a left quotient ring of a ring decomposed into a direct sum of left ideals

S. L. Berlov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: Let $R=P_1\oplus P_2\oplus\dots\oplus P_n$ be a decomposition of a ring into a direct sum of indecomposable left ideals. Assume that these ideals possess the following properties: (1) any nonzero homomorphisms $\varphi\colon P_i\to P_j$ is a monomorphism; (2) if subideals $Q_1,Q_2$ of the ideal $P_j$ are isomorphic to the ideal $P_i$, then there exists a subideal $Q_3\subseteq Q_1\cap Q_2$, which is also isomorphic to $P_i$. It is proved that, under these asumptions, a left quotient ring of the ring $R$ exists. This left quotient ring inherits properties (1), (2) and satisfies condition (3): any nonzero homomorphism $\varphi\colon P_i\to P_i$ is an automorphism of the ideal $P_i$. Bibliography: 2 titles.
Received: 01.02.1995
English version:
Journal of Mathematical Sciences (New York), 1998, Volume 89, Issue 2, Pages 1082–1086
DOI: https://doi.org/10.1007/BF02355852
Bibliographic databases:
Document Type: Article
UDC: 511.23
Language: Russian
Citation: S. L. Berlov, “Sufficient conditions for the existence of a left quotient ring of a ring decomposed into a direct sum of left ideals”, Problems in the theory of representations of algebras and groups. Part 4, Zap. Nauchn. Sem. POMI, 227, POMI, St. Petersburg, 1995, 9–14; J. Math. Sci. (New York), 89:2 (1998), 1082–1086
Citation in format AMSBIB
\Bibitem{Ber95}
\by S.~L.~Berlov
\paper Sufficient conditions for the existence of a~left quotient ring of a~ring decomposed into a~direct sum of left ideals
\inbook Problems in the theory of representations of algebras and groups. Part~4
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 227
\pages 9--14
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4258}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1374552}
\zmath{https://zbmath.org/?q=an:0897.16016}
\transl
\jour J. Math. Sci. (New York)
\yr 1998
\vol 89
\issue 2
\pages 1082--1086
\crossref{https://doi.org/10.1007/BF02355852}
Linking options:
  • https://www.mathnet.ru/eng/znsl4258
  • https://www.mathnet.ru/eng/znsl/v227/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024