Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 128, Pages 172–185 (Mi znsl4252)  

Asymptotics of solutions of the Helmholtz equation in a region of caustic shadow I.

Z. A. Yanson
Abstract: A generalization of the method of geometrical optics for finding the solutions of reduced wave equation on a dark side of a caustic is used. The case of inhomogeneous two-dimensional space with analytical velocity $v(x, z)$ of wave propagation is considered. It is shown that the law of changing of amplitude coefficients are determined by two veotorial fields depended on the combination of vectors $\nabla\xi$ and $\nabla\eta$ where $\tau=\xi+i\eta$ is the eikonal. The procedure of analytical continuation of the eikonal equation to complex coordinare space is applied and as a result the system of partial differential equations for $\xi$ and $\eta$ is arised. The method of complex rays for solving this system with initial data on a caustie is used. The method is illustrated by the standard example $v^{-2}(z)=c_0-c_1z$ where $c_0, c_1={\rm const}$, $z$ is the distance from the caustic.
Bibliographic databases:
Document Type: Article
UDC: 517.934
Language: Russian
Citation: Z. A. Yanson, “Asymptotics of solutions of the Helmholtz equation in a region of caustic shadow I.”, Mathematical problems in the theory of wave propagation. Part 13, Zap. Nauchn. Sem. LOMI, 128, "Nauka", Leningrad. Otdel., Leningrad, 1983, 172–185
Citation in format AMSBIB
\Bibitem{Yan83}
\by Z.~A.~Yanson
\paper Asymptotics of solutions of the Helmholtz equation in a~region of caustic shadow~I.
\inbook Mathematical problems in the theory of wave propagation. Part~13
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 128
\pages 172--185
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4252}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=712315}
\zmath{https://zbmath.org/?q=an:0554.35026}
Linking options:
  • https://www.mathnet.ru/eng/znsl4252
  • https://www.mathnet.ru/eng/znsl/v128/p172
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024