Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 237, Pages 21–30 (Mi znsl423)  

This article is cited in 1 scientific paper (total in 1 paper)

Estimates of the Levy constant for $\sqrt p$ and class number one criterion for $\mathbb Q(\sqrt p)$

E. P. Golubeva

St. Petersburg State University of Telecommunications
Full-text PDF (184 kB) Citations (1)
Abstract: Let $p\equiv3\!\pmod4$ be a prime, let $l(\sqrt p)$ be the length of the period of the expansion of $\sqrt p$ into a continued fraction, and let $h(4p)$ be the class number of the field $\mathbb Q(\sqrt p)$. Our main result is as follows. For $p>91$, $h(4p)=1$ if and only if $l(\sqrt p)>0.56\sqrt p\ L_{4p}(1)$, where $L_{4p}(1)$ is the corresponding Dirichlet series. The proof is based on studying linear relations between convergents of the expansion of $\sqrt p$ into a continued fraction.
Received: 09.12.1996
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 95, Issue 3, Pages 2185–2191
DOI: https://doi.org/10.1007/BF02172462
Bibliographic databases:
UDC: 511.334
Language: Russian
Citation: E. P. Golubeva, “Estimates of the Levy constant for $\sqrt p$ and class number one criterion for $\mathbb Q(\sqrt p)$”, Analytical theory of numbers and theory of functions. Part 14, Zap. Nauchn. Sem. POMI, 237, POMI, St. Petersburg, 1997, 21–30; J. Math. Sci. (New York), 95:3 (1999), 2185–2191
Citation in format AMSBIB
\Bibitem{Gol97}
\by E.~P.~Golubeva
\paper Estimates of the Levy constant for $\sqrt p$ and class number one criterion for $\mathbb Q(\sqrt p)$
\inbook Analytical theory of numbers and theory of functions. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 237
\pages 21--30
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl423}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691280}
\zmath{https://zbmath.org/?q=an:0938.11049}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 95
\issue 3
\pages 2185--2191
\crossref{https://doi.org/10.1007/BF02172462}
Linking options:
  • https://www.mathnet.ru/eng/znsl423
  • https://www.mathnet.ru/eng/znsl/v237/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024