|
Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 142, Pages 59–67
(Mi znsl4229)
|
|
|
|
The central limit theorem under the absence of extremal absolute order statistics
V. A. Egorov
Abstract:
One finds conditions for the relation $\Delta_{n,r}=o(1)=\nabla_{n,r}$, где $\Delta_{n,r}=\sup_x|P\Big(\frac{S_{n,r}}{a_n}<x\Big)-\Phi(x)|$, $S_{n,r}=X_{(1)}+\dots+X_{(n-r)}$, $X_{(1)},\dots,X_{(n)}$ are the absolute order statistics for a repeated sample from a symmetric distribution.
Citation:
V. A. Egorov, “The central limit theorem under the absence of extremal absolute order statistics”, Problems of the theory of probability distributions. Part IX, Zap. Nauchn. Sem. LOMI, 142, "Nauka", Leningrad. Otdel., Leningrad, 1985, 59–67; J. Soviet Math., 36:4 (1987), 476–481
Linking options:
https://www.mathnet.ru/eng/znsl4229 https://www.mathnet.ru/eng/znsl/v142/p59
|
Statistics & downloads: |
Abstract page: | 113 | Full-text PDF : | 50 |
|