Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 142, Pages 6–24 (Mi znsl4224)  

This article is cited in 2 scientific papers (total in 2 papers)

Distribution of the supremum of increments of Brownian local time

A. N. Borodin
Full-text PDF (713 kB) Citations (2)
Abstract: The joint distribution of the variables $\hat t(t,r)$, $\hat t(t,r)$ and $\sup_{0\le s\le t}(\hat t(s,q)-\hat t(s,r))$, where $\hat t(t,x)$ is Brownian local time, is determined uniquely by the Laplace transform $\int_0^\infty e^{-\lambda t}E\{e^{-\mu\hat t(t,r)-\eta\hat t(t,q)},\sup_{0\le s\le t}(\hat t(s,q)-\hat t(s,r))>h|w(0)=x\}\,dt.$ The computation of this transform constitutes the basic content of this paper. The obtained expression is used for the derivation of the exact modulus of continuity of the process $\hat t(t,x)$ with respect to the variable $x$:
$$ P\Big\{\limsup_{\substack{|y-x|=\Delta\downarrow0\\y,x\in R^1}}\frac{\sup_{0\le s\le t}|\hat t(s,y)-\hat t(s,x)|}{((\hat t(t,x)+\hat t(t,y))\Delta\ln 1/\Delta)^{1/2}}=2\Bigl\}=1. $$
English version:
Journal of Soviet Mathematics, 1987, Volume 36, Issue 4, Pages 439–451
DOI: https://doi.org/10.1007/BF01663452
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. N. Borodin, “Distribution of the supremum of increments of Brownian local time”, Problems of the theory of probability distributions. Part IX, Zap. Nauchn. Sem. LOMI, 142, "Nauka", Leningrad. Otdel., Leningrad, 1985, 6–24; J. Soviet Math., 36:4 (1987), 439–451
Citation in format AMSBIB
\Bibitem{Bor85}
\by A.~N.~Borodin
\paper Distribution of the supremum of increments of Brownian local time
\inbook Problems of the theory of probability distributions. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 142
\pages 6--24
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=788182}
\zmath{https://zbmath.org/?q=an:0569.60077}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 36
\issue 4
\pages 439--451
\crossref{https://doi.org/10.1007/BF01663452}
Linking options:
  • https://www.mathnet.ru/eng/znsl4224
  • https://www.mathnet.ru/eng/znsl/v142/p6
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024