Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 141, Pages 176–182 (Mi znsl4221)  

This article is cited in 1 scientific paper (total in 1 paper)

Lipschitz functions of self-adjoint operators in perturbation theory

J. B. Farforovskaja
Full-text PDF (320 kB) Citations (1)
Abstract: Let $A$ be a self-adjoint operator in a Hilbert space. In order that for each differentiable function $f$ and for each self-adjoint operator $B$ one should have the estimate $\|f(B)-f(A)\|\le c_f\|B-A\|$ it is necessary and sufficient that the spectrum of the operator $A$ be a finite set. If $m$ is the number of points of the spectrum of the operator $A$, then for the constant $c_f$ one can take $8(\log_2m+2)^2[f]$, where $[f]$ is the Lipschitz constant of the function $f$.
English version:
Journal of Soviet Mathematics, 1987, Volume 37, Issue 5, Pages 1365–1368
DOI: https://doi.org/10.1007/BF01327047
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: J. B. Farforovskaja, “Lipschitz functions of self-adjoint operators in perturbation theory”, Investigations on linear operators and function theory. Part XIV, Zap. Nauchn. Sem. LOMI, 141, "Nauka", Leningrad. Otdel., Leningrad, 1985, 176–182; J. Soviet Math., 37:5 (1987), 1365–1368
Citation in format AMSBIB
\Bibitem{Far85}
\by J.~B.~Farforovskaja
\paper Lipschitz functions of self-adjoint operators in perturbation theory
\inbook Investigations on linear operators and function theory. Part~XIV
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 141
\pages 176--182
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=788898}
\zmath{https://zbmath.org/?q=an:0634.47017}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 37
\issue 5
\pages 1365--1368
\crossref{https://doi.org/10.1007/BF01327047}
Linking options:
  • https://www.mathnet.ru/eng/znsl4221
  • https://www.mathnet.ru/eng/znsl/v141/p176
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:105
    Full-text PDF :39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024