Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 127, Pages 181–200 (Mi znsl4220)  

This article is cited in 2 scientific papers (total in 2 papers)

Nonlinear and quasilinear evolution equations: existence, uniqueness, and coieparision of solutions: rate of convergence of the difference method

M. I. Khazan
Full-text PDF (997 kB) Citations (2)
Abstract: The Cauchy problem
\begin{gather} \frac{du(t)}{dt}=A(t, [u](t))u(t)+f(t),\quad0\leqslant t\leqslant T,\quad u(0)=u_0, \end{gather}
in a Banach space $X$ is considered. Here $[u](t)=u|_{[0, t]}$, $f\in L_1(0, T; X)$, and for $t$, $w$ fixed the nonlinear operator $A(t, w)$ is a preusogenerator of a semigroup $e^{sA}$ $(s\geqslant0)$ such that $\|e^{sA}u-e^{sA}v\|\leqslant e^{\omega(r, a)^s}\|u-v\|$ when $u, v, w(r)\in Z_r$ (a ball in $Z\subset X$), $\|Aw(\tau)\|\leqslant a$; conditions on $w$-dependence of $A(t, w)$ allow the “highest order terms” to contain $w$. We prove local and global existence and uniqueness theorems for DS-limit solution of (1), study the differentiability of this solution and it's dependence on $u_0$ and $f$, extending analogous results for the equation $\frac{du(t)}{dt}=A(t)u(t)+f(t)$ with $\omega$-dissipative operators due to Crandall–Pazy, Benilan, Crandall–Evans, Evans, Oharu, Pavel. In quasilinear case our results complement ant generalize the well-known theorem of Kato. Besides that, we obtain estimates of the rate of convergence of difference method and estimated of $\|u(t)-v(t)\|$, where $v$ solves (1) with $A(t, w)$ replaced by $B(t, w)$, these results are new also for equations with dissipative operators.
Bibliographic databases:
Document Type: Article
UDC: 518:517.986.7/517.944
Language: Russian
Citation: M. I. Khazan, “Nonlinear and quasilinear evolution equations: existence, uniqueness, and coieparision of solutions: rate of convergence of the difference method”, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Zap. Nauchn. Sem. LOMI, 127, "Nauka", Leningrad. Otdel., Leningrad, 1983, 181–200
Citation in format AMSBIB
\Bibitem{Kha83}
\by M.~I.~Khazan
\paper Nonlinear and quasilinear evolution equations: existence, uniqueness, and coieparision of solutions: rate of convergence of the difference method
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~15
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 127
\pages 181--200
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4220}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=702850}
\zmath{https://zbmath.org/?q=an:0524.47043}
Linking options:
  • https://www.mathnet.ru/eng/znsl4220
  • https://www.mathnet.ru/eng/znsl/v127/p181
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024