Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 127, Pages 169–180 (Mi znsl4219)  

This article is cited in 4 scientific papers (total in 4 papers)

The asymptotic of spectrum of the Maxwell's operator.

Yu. G. Safarov
Full-text PDF (595 kB) Citations (4)
Abstract: The asymptotic formula $N^\pm(\lambda)=(3\pi^2)^{-1}\operatorname{mes}\Omega\cdot\lambda^3+O(\lambda^2)$ is obtained for distribution's functions of positive and negative eigenvalues of the operator $\begin{pmatrix}0 & i\operatorname{rot} \\ -i\operatorname{rot} & 0\end{pmatrix}$ in the domain $\Omega$ with smooth boundary. It is proved under additional assumptions about properties of the geodesic billiards in that $N^\pm(\lambda)=(3\pi^2)^{-1}\operatorname{mes}\Omega\cdot\lambda^3+O(\lambda^2)$.
Bibliographic databases:
Document Type: Article
UDC: 517.43
Language: Russian
Citation: Yu. G. Safarov, “The asymptotic of spectrum of the Maxwell's operator.”, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Zap. Nauchn. Sem. LOMI, 127, "Nauka", Leningrad. Otdel., Leningrad, 1983, 169–180
Citation in format AMSBIB
\Bibitem{Saf83}
\by Yu.~G.~Safarov
\paper The asymptotic of spectrum of the Maxwell's operator.
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~15
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 127
\pages 169--180
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=702849}
\zmath{https://zbmath.org/?q=an:0535.35066}
Linking options:
  • https://www.mathnet.ru/eng/znsl4219
  • https://www.mathnet.ru/eng/znsl/v127/p169
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024