|
Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 127, Pages 152–157
(Mi znsl4217)
|
|
|
|
On the existence of a weak solutions of a parabolic initial-boundary value problem in a class of repidly increasing functions
M. I. Maksimova
Abstract:
The initial-boundary value problem
\begin{gather*}
\mathscr Lu\equiv\frac{\partial u}{\partial t}-\sum_{i, j=1}^n\frac{\partial}{\partial x_i}(a_{ij}(x, t)u_{x_j})+\sum_{i=1}^na_iu_{x_i}+au=f-\sum_{i=1}^n\frac{\partial f_i}{\partial x_i},\\
u|_{t=0}=\varphi(x),\quad u|_{\partial\Omega}=0,
\end{gather*}
i s considered in an unbounded domain $\Omega\subset\mathbb R^n$. It is proved that this problem possesses the unique weak solution whose $W^{1, 0}_2(Q_{r, T})$-norm does not exceed $C_1e^{\lambda r^2}$, $\forall r>0$, $Q_{r, T}=\Omega_r\times(0, T)$, $\Omega_r=\{x\in\Omega:|x|<r\}$.
Citation:
M. I. Maksimova, “On the existence of a weak solutions of a parabolic initial-boundary value problem in a class of repidly increasing functions”, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Zap. Nauchn. Sem. LOMI, 127, "Nauka", Leningrad. Otdel., Leningrad, 1983, 152–157
Linking options:
https://www.mathnet.ru/eng/znsl4217 https://www.mathnet.ru/eng/znsl/v127/p152
|
Statistics & downloads: |
Abstract page: | 105 | Full-text PDF : | 43 |
|