Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 127, Pages 152–157 (Mi znsl4217)  

On the existence of a weak solutions of a parabolic initial-boundary value problem in a class of repidly increasing functions

M. I. Maksimova
Abstract: The initial-boundary value problem
\begin{gather*} \mathscr Lu\equiv\frac{\partial u}{\partial t}-\sum_{i, j=1}^n\frac{\partial}{\partial x_i}(a_{ij}(x, t)u_{x_j})+\sum_{i=1}^na_iu_{x_i}+au=f-\sum_{i=1}^n\frac{\partial f_i}{\partial x_i},\\ u|_{t=0}=\varphi(x),\quad u|_{\partial\Omega}=0, \end{gather*}
i s considered in an unbounded domain $\Omega\subset\mathbb R^n$. It is proved that this problem possesses the unique weak solution whose $W^{1, 0}_2(Q_{r, T})$-norm does not exceed $C_1e^{\lambda r^2}$, $\forall r>0$, $Q_{r, T}=\Omega_r\times(0, T)$, $\Omega_r=\{x\in\Omega:|x|<r\}$.
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: M. I. Maksimova, “On the existence of a weak solutions of a parabolic initial-boundary value problem in a class of repidly increasing functions”, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Zap. Nauchn. Sem. LOMI, 127, "Nauka", Leningrad. Otdel., Leningrad, 1983, 152–157
Citation in format AMSBIB
\Bibitem{Mak83}
\by M.~I.~Maksimova
\paper On the existence of a~weak solutions of a~parabolic initial-boundary value problem in a~class of repidly increasing functions
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~15
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 127
\pages 152--157
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=702847}
\zmath{https://zbmath.org/?q=an:0518.35044}
Linking options:
  • https://www.mathnet.ru/eng/znsl4217
  • https://www.mathnet.ru/eng/znsl/v127/p152
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:105
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024