Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 127, Pages 3–6 (Mi znsl4210)  

On a condition of the absence of a singular continuous spectrum for the Friedrichs model

A. F. Vakulenko
Abstract: An extension of the analytic dilation or the Mourre commutators methods is proposed. We consider two self-adjoints operators $H=H_0+V$ and $A$. Assuming some smouthness properties of $V$ and $[V, A]$ we prove the absence of singular continuous spectrum of $H$. No positivity of $[H_0, V]$ is required.
Bibliographic databases:
Document Type: Article
UDC: 517.9, 517.43
Language: Russian
Citation: A. F. Vakulenko, “On a condition of the absence of a singular continuous spectrum for the Friedrichs model”, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Zap. Nauchn. Sem. LOMI, 127, "Nauka", Leningrad. Otdel., Leningrad, 1983, 3–6
Citation in format AMSBIB
\Bibitem{Vak83}
\by A.~F.~Vakulenko
\paper On a~condition of the absence of a~singular continuous spectrum for the Friedrichs model
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~15
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 127
\pages 3--6
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=702840}
\zmath{https://zbmath.org/?q=an:0565.47010}
Linking options:
  • https://www.mathnet.ru/eng/znsl4210
  • https://www.mathnet.ru/eng/znsl/v127/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024