|
Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 196–201
(Mi znsl4207)
|
|
|
|
Interpolating Blaschke products and ideals of the algebra $H^\infty$
V. A. Tolokonnikov
Abstract:
For a function $f$ in $H^\infty(l^2)$ the ideals $I(f)=\{h\in H^\infty:h=\sum_{i=1}^\infty f_ig_i, g\in H^\infty(l^2)\}$ and $J(f)=\{h\in H^\infty:|h(z)|\leqslant c\|f(z)\|_2, z\in\mathbb D\}$ are considered. The functions $f$ for which there exists an interpolating Blaschke product in $I(f)$ (or $J(f)$) are characterized. Moreover there is given a characterization of functions $u$ in $H^\infty$ for which
$$
f\in H^\infty(l^2), u\in J(f)\Rightarrow u\in I(f).
$$
(In the case $u=1$ the latter implication is the Carleson Corona theorem).
Citation:
V. A. Tolokonnikov, “Interpolating Blaschke products and ideals of the algebra $H^\infty$”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 196–201
Linking options:
https://www.mathnet.ru/eng/znsl4207 https://www.mathnet.ru/eng/znsl/v126/p196
|
Statistics & downloads: |
Abstract page: | 200 | Full-text PDF : | 54 |
|