Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 191–195 (Mi znsl4206)  

Continuity of the harmonic projection in $L^p$-spaces

A. A. Soloviev
Abstract: For bounded finetely connected domains on the complex plane whose boundary is piece-wise and without cusp points conditions are given ensuring boundedness of the harmonic projection on $L^p$-spaces.
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. A. Soloviev, “Continuity of the harmonic projection in $L^p$-spaces”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 191–195
Citation in format AMSBIB
\Bibitem{Sol83}
\by A.~A.~Soloviev
\paper Continuity of the harmonic projection in $L^p$-spaces
\inbook Investigations on linear operators and function theory. Part~XII
\serial Zap. Nauchn. Sem. LOMI
\yr 1983
\vol 126
\pages 191--195
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=697438}
\zmath{https://zbmath.org/?q=an:0564.30038}
Linking options:
  • https://www.mathnet.ru/eng/znsl4206
  • https://www.mathnet.ru/eng/znsl/v126/p191
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024