|
Zapiski Nauchnykh Seminarov LOMI, 1983, Volume 126, Pages 170–179
(Mi znsl4204)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Invariant subspaces for Toeplitz operators
V. V. Peller
Abstract:
The article is devoted to the invariant subspace problem for Toeplitz operators.
Let $\Gamma$ be a Lipschitz arc on the complex plane, $f$ be a non-constant continuous function on the unit circle. If there exists an open disc $D$ such that $f(\mathbb T)\cap\Gamma\cap D\ne\varnothing$, $f(\mathbb T)\cap(\bar D\setminus\Gamma)\ne\varnothing$ and if the modulus of continuity $\omega_f$ of $f$ satisfies the inequality
$$
\int\limits_\bigcirc\frac{\omega_f(t)}{t\log\frac1t}\,dt<+\infty,
$$
then non-trivial hyperinvariant subspaces for the Toeplitz operator $T_f$ on the Hardy class $H^2$ are proved to exist.
For the proof of this result the Lubich–Matsaev theorem is used.
Citation:
V. V. Peller, “Invariant subspaces for Toeplitz operators”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, "Nauka", Leningrad. Otdel., Leningrad, 1983, 170–179
Linking options:
https://www.mathnet.ru/eng/znsl4204 https://www.mathnet.ru/eng/znsl/v126/p170
|
Statistics & downloads: |
Abstract page: | 226 | Full-text PDF : | 74 |
|